Metamath Proof Explorer


Theorem jcab

Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of WhiteheadRussell p. 121. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 27-Nov-2013)

Ref Expression
Assertion jcab
|- ( ( ph -> ( ps /\ ch ) ) <-> ( ( ph -> ps ) /\ ( ph -> ch ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ps /\ ch ) -> ps )
2 1 imim2i
 |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ps ) )
3 simpr
 |-  ( ( ps /\ ch ) -> ch )
4 3 imim2i
 |-  ( ( ph -> ( ps /\ ch ) ) -> ( ph -> ch ) )
5 2 4 jca
 |-  ( ( ph -> ( ps /\ ch ) ) -> ( ( ph -> ps ) /\ ( ph -> ch ) ) )
6 pm3.43
 |-  ( ( ( ph -> ps ) /\ ( ph -> ch ) ) -> ( ph -> ( ps /\ ch ) ) )
7 5 6 impbii
 |-  ( ( ph -> ( ps /\ ch ) ) <-> ( ( ph -> ps ) /\ ( ph -> ch ) ) )