Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i . (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by AV, 20-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jccir.1 | |- ( ph -> ps ) |
|
jccir.2 | |- ( ps -> ch ) |
||
Assertion | jccir | |- ( ph -> ( ps /\ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jccir.1 | |- ( ph -> ps ) |
|
2 | jccir.2 | |- ( ps -> ch ) |
|
3 | 1 2 | syl | |- ( ph -> ch ) |
4 | 1 3 | jca | |- ( ph -> ( ps /\ ch ) ) |