Metamath Proof Explorer


Theorem jccir

Description: Inference conjoining a consequent of a consequent to the right of the consequent in an implication. See also ex-natded5.3i . (Contributed by Mario Carneiro, 9-Feb-2017) (Revised by AV, 20-Aug-2019)

Ref Expression
Hypotheses jccir.1
|- ( ph -> ps )
jccir.2
|- ( ps -> ch )
Assertion jccir
|- ( ph -> ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 jccir.1
 |-  ( ph -> ps )
2 jccir.2
 |-  ( ps -> ch )
3 1 2 syl
 |-  ( ph -> ch )
4 1 3 jca
 |-  ( ph -> ( ps /\ ch ) )