Description: Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Proof shortened by Wolf Lammen, 10-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jcnd.1 | |- ( ph -> ps ) |
|
jcnd.2 | |- ( ph -> -. ch ) |
||
Assertion | jcnd | |- ( ph -> -. ( ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcnd.1 | |- ( ph -> ps ) |
|
2 | jcnd.2 | |- ( ph -> -. ch ) |
|
3 | jcn | |- ( ps -> ( -. ch -> -. ( ps -> ch ) ) ) |
|
4 | 1 2 3 | sylc | |- ( ph -> -. ( ps -> ch ) ) |