Metamath Proof Explorer


Theorem jcndOLD

Description: Obsolete version of jcnd as of 10-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses jcndOLD.1
|- ( ph -> ps )
jcndOLD.2
|- ( ph -> -. ch )
Assertion jcndOLD
|- ( ph -> -. ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 jcndOLD.1
 |-  ( ph -> ps )
2 jcndOLD.2
 |-  ( ph -> -. ch )
3 1 2 jc
 |-  ( ph -> -. ( ps -> -. -. ch ) )
4 notnotb
 |-  ( ch <-> -. -. ch )
5 4 imbi2i
 |-  ( ( ps -> ch ) <-> ( ps -> -. -. ch ) )
6 3 5 sylnibr
 |-  ( ph -> -. ( ps -> ch ) )