Description: Inference conjoining a theorem to right of consequent in an implication. (Contributed by NM, 31-Dec-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | jctil.1 | |- ( ph -> ps ) |
|
| jctil.2 | |- ch |
||
| Assertion | jctir | |- ( ph -> ( ps /\ ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jctil.1 | |- ( ph -> ps ) |
|
| 2 | jctil.2 | |- ch |
|
| 3 | 2 | a1i | |- ( ph -> ch ) |
| 4 | 1 3 | jca | |- ( ph -> ( ps /\ ch ) ) |