Step |
Hyp |
Ref |
Expression |
1 |
|
jensen.1 |
|- ( ph -> D C_ RR ) |
2 |
|
jensen.2 |
|- ( ph -> F : D --> RR ) |
3 |
|
jensen.3 |
|- ( ( ph /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D ) |
4 |
|
jensen.4 |
|- ( ph -> A e. Fin ) |
5 |
|
jensen.5 |
|- ( ph -> T : A --> ( 0 [,) +oo ) ) |
6 |
|
jensen.6 |
|- ( ph -> X : A --> D ) |
7 |
|
jensen.7 |
|- ( ph -> 0 < ( CCfld gsum T ) ) |
8 |
|
jensen.8 |
|- ( ( ph /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
9 |
5
|
ffnd |
|- ( ph -> T Fn A ) |
10 |
|
fnresdm |
|- ( T Fn A -> ( T |` A ) = T ) |
11 |
9 10
|
syl |
|- ( ph -> ( T |` A ) = T ) |
12 |
11
|
oveq2d |
|- ( ph -> ( CCfld gsum ( T |` A ) ) = ( CCfld gsum T ) ) |
13 |
7 12
|
breqtrrd |
|- ( ph -> 0 < ( CCfld gsum ( T |` A ) ) ) |
14 |
|
ssid |
|- A C_ A |
15 |
13 14
|
jctil |
|- ( ph -> ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) ) |
16 |
|
sseq1 |
|- ( a = (/) -> ( a C_ A <-> (/) C_ A ) ) |
17 |
|
reseq2 |
|- ( a = (/) -> ( T |` a ) = ( T |` (/) ) ) |
18 |
|
res0 |
|- ( T |` (/) ) = (/) |
19 |
17 18
|
eqtrdi |
|- ( a = (/) -> ( T |` a ) = (/) ) |
20 |
19
|
oveq2d |
|- ( a = (/) -> ( CCfld gsum ( T |` a ) ) = ( CCfld gsum (/) ) ) |
21 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
22 |
21
|
gsum0 |
|- ( CCfld gsum (/) ) = 0 |
23 |
20 22
|
eqtrdi |
|- ( a = (/) -> ( CCfld gsum ( T |` a ) ) = 0 ) |
24 |
23
|
breq2d |
|- ( a = (/) -> ( 0 < ( CCfld gsum ( T |` a ) ) <-> 0 < 0 ) ) |
25 |
16 24
|
anbi12d |
|- ( a = (/) -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) <-> ( (/) C_ A /\ 0 < 0 ) ) ) |
26 |
|
reseq2 |
|- ( a = (/) -> ( ( T oF x. X ) |` a ) = ( ( T oF x. X ) |` (/) ) ) |
27 |
26
|
oveq2d |
|- ( a = (/) -> ( CCfld gsum ( ( T oF x. X ) |` a ) ) = ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) ) |
28 |
27 23
|
oveq12d |
|- ( a = (/) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) ) |
29 |
|
reseq2 |
|- ( a = (/) -> ( ( T oF x. ( F o. X ) ) |` a ) = ( ( T oF x. ( F o. X ) ) |` (/) ) ) |
30 |
29
|
oveq2d |
|- ( a = (/) -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) = ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) ) |
31 |
30 23
|
oveq12d |
|- ( a = (/) -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) ) |
32 |
31
|
breq2d |
|- ( a = (/) -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) <-> ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) ) ) |
33 |
32
|
rabbidv |
|- ( a = (/) -> { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } = { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) |
34 |
28 33
|
eleq12d |
|- ( a = (/) -> ( ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } <-> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) ) |
35 |
25 34
|
imbi12d |
|- ( a = (/) -> ( ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) <-> ( ( (/) C_ A /\ 0 < 0 ) -> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) ) ) |
36 |
35
|
imbi2d |
|- ( a = (/) -> ( ( ph -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) ) <-> ( ph -> ( ( (/) C_ A /\ 0 < 0 ) -> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) ) ) ) |
37 |
|
sseq1 |
|- ( a = k -> ( a C_ A <-> k C_ A ) ) |
38 |
|
reseq2 |
|- ( a = k -> ( T |` a ) = ( T |` k ) ) |
39 |
38
|
oveq2d |
|- ( a = k -> ( CCfld gsum ( T |` a ) ) = ( CCfld gsum ( T |` k ) ) ) |
40 |
39
|
breq2d |
|- ( a = k -> ( 0 < ( CCfld gsum ( T |` a ) ) <-> 0 < ( CCfld gsum ( T |` k ) ) ) ) |
41 |
37 40
|
anbi12d |
|- ( a = k -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) <-> ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) ) ) |
42 |
|
reseq2 |
|- ( a = k -> ( ( T oF x. X ) |` a ) = ( ( T oF x. X ) |` k ) ) |
43 |
42
|
oveq2d |
|- ( a = k -> ( CCfld gsum ( ( T oF x. X ) |` a ) ) = ( CCfld gsum ( ( T oF x. X ) |` k ) ) ) |
44 |
43 39
|
oveq12d |
|- ( a = k -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) |
45 |
|
reseq2 |
|- ( a = k -> ( ( T oF x. ( F o. X ) ) |` a ) = ( ( T oF x. ( F o. X ) ) |` k ) ) |
46 |
45
|
oveq2d |
|- ( a = k -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) = ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) ) |
47 |
46 39
|
oveq12d |
|- ( a = k -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) |
48 |
47
|
breq2d |
|- ( a = k -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) <-> ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) ) |
49 |
48
|
rabbidv |
|- ( a = k -> { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } = { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) |
50 |
44 49
|
eleq12d |
|- ( a = k -> ( ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } <-> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) |
51 |
41 50
|
imbi12d |
|- ( a = k -> ( ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) <-> ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) ) |
52 |
51
|
imbi2d |
|- ( a = k -> ( ( ph -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) ) <-> ( ph -> ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) ) ) |
53 |
|
sseq1 |
|- ( a = ( k u. { c } ) -> ( a C_ A <-> ( k u. { c } ) C_ A ) ) |
54 |
|
reseq2 |
|- ( a = ( k u. { c } ) -> ( T |` a ) = ( T |` ( k u. { c } ) ) ) |
55 |
54
|
oveq2d |
|- ( a = ( k u. { c } ) -> ( CCfld gsum ( T |` a ) ) = ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) |
56 |
55
|
breq2d |
|- ( a = ( k u. { c } ) -> ( 0 < ( CCfld gsum ( T |` a ) ) <-> 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) |
57 |
53 56
|
anbi12d |
|- ( a = ( k u. { c } ) -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) <-> ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
58 |
|
reseq2 |
|- ( a = ( k u. { c } ) -> ( ( T oF x. X ) |` a ) = ( ( T oF x. X ) |` ( k u. { c } ) ) ) |
59 |
58
|
oveq2d |
|- ( a = ( k u. { c } ) -> ( CCfld gsum ( ( T oF x. X ) |` a ) ) = ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) ) |
60 |
59 55
|
oveq12d |
|- ( a = ( k u. { c } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) |
61 |
|
reseq2 |
|- ( a = ( k u. { c } ) -> ( ( T oF x. ( F o. X ) ) |` a ) = ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) |
62 |
61
|
oveq2d |
|- ( a = ( k u. { c } ) -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) = ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) ) |
63 |
62 55
|
oveq12d |
|- ( a = ( k u. { c } ) -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) |
64 |
63
|
breq2d |
|- ( a = ( k u. { c } ) -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) <-> ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
65 |
64
|
rabbidv |
|- ( a = ( k u. { c } ) -> { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } = { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) |
66 |
60 65
|
eleq12d |
|- ( a = ( k u. { c } ) -> ( ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } <-> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
67 |
57 66
|
imbi12d |
|- ( a = ( k u. { c } ) -> ( ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) <-> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) |
68 |
67
|
imbi2d |
|- ( a = ( k u. { c } ) -> ( ( ph -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) ) <-> ( ph -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) ) |
69 |
|
sseq1 |
|- ( a = A -> ( a C_ A <-> A C_ A ) ) |
70 |
|
reseq2 |
|- ( a = A -> ( T |` a ) = ( T |` A ) ) |
71 |
70
|
oveq2d |
|- ( a = A -> ( CCfld gsum ( T |` a ) ) = ( CCfld gsum ( T |` A ) ) ) |
72 |
71
|
breq2d |
|- ( a = A -> ( 0 < ( CCfld gsum ( T |` a ) ) <-> 0 < ( CCfld gsum ( T |` A ) ) ) ) |
73 |
69 72
|
anbi12d |
|- ( a = A -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) <-> ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) ) ) |
74 |
|
reseq2 |
|- ( a = A -> ( ( T oF x. X ) |` a ) = ( ( T oF x. X ) |` A ) ) |
75 |
74
|
oveq2d |
|- ( a = A -> ( CCfld gsum ( ( T oF x. X ) |` a ) ) = ( CCfld gsum ( ( T oF x. X ) |` A ) ) ) |
76 |
75 71
|
oveq12d |
|- ( a = A -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) ) |
77 |
|
reseq2 |
|- ( a = A -> ( ( T oF x. ( F o. X ) ) |` a ) = ( ( T oF x. ( F o. X ) ) |` A ) ) |
78 |
77
|
oveq2d |
|- ( a = A -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) = ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) ) |
79 |
78 71
|
oveq12d |
|- ( a = A -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) ) |
80 |
79
|
breq2d |
|- ( a = A -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) <-> ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) ) ) |
81 |
80
|
rabbidv |
|- ( a = A -> { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } = { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) |
82 |
76 81
|
eleq12d |
|- ( a = A -> ( ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } <-> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) ) |
83 |
73 82
|
imbi12d |
|- ( a = A -> ( ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) <-> ( ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) ) ) |
84 |
83
|
imbi2d |
|- ( a = A -> ( ( ph -> ( ( a C_ A /\ 0 < ( CCfld gsum ( T |` a ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` a ) ) / ( CCfld gsum ( T |` a ) ) ) } ) ) <-> ( ph -> ( ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) ) ) ) |
85 |
|
0re |
|- 0 e. RR |
86 |
85
|
ltnri |
|- -. 0 < 0 |
87 |
86
|
pm2.21i |
|- ( 0 < 0 -> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) |
88 |
87
|
adantl |
|- ( ( (/) C_ A /\ 0 < 0 ) -> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) |
89 |
88
|
a1i |
|- ( ph -> ( ( (/) C_ A /\ 0 < 0 ) -> ( ( CCfld gsum ( ( T oF x. X ) |` (/) ) ) / 0 ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` (/) ) ) / 0 ) } ) ) |
90 |
|
impexp |
|- ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) <-> ( k C_ A -> ( 0 < ( CCfld gsum ( T |` k ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) ) |
91 |
|
simprl |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( k u. { c } ) C_ A ) |
92 |
91
|
unssad |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> k C_ A ) |
93 |
|
simpr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> 0 < ( CCfld gsum ( T |` k ) ) ) |
94 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> D C_ RR ) |
95 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> F : D --> RR ) |
96 |
|
simplll |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ph ) |
97 |
96 3
|
sylan |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D ) |
98 |
96 4
|
syl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> A e. Fin ) |
99 |
96 5
|
syl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> T : A --> ( 0 [,) +oo ) ) |
100 |
96 6
|
syl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> X : A --> D ) |
101 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> 0 < ( CCfld gsum T ) ) |
102 |
96 8
|
sylan |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
103 |
|
simpllr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> -. c e. k ) |
104 |
91
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( k u. { c } ) C_ A ) |
105 |
|
eqid |
|- ( CCfld gsum ( T |` k ) ) = ( CCfld gsum ( T |` k ) ) |
106 |
|
eqid |
|- ( CCfld gsum ( T |` ( k u. { c } ) ) ) = ( CCfld gsum ( T |` ( k u. { c } ) ) ) |
107 |
|
cnring |
|- CCfld e. Ring |
108 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
109 |
107 108
|
mp1i |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> CCfld e. CMnd ) |
110 |
4
|
ad2antrr |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> A e. Fin ) |
111 |
110 92
|
ssfid |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> k e. Fin ) |
112 |
|
rege0subm |
|- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
113 |
112
|
a1i |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) ) |
114 |
5
|
ad2antrr |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> T : A --> ( 0 [,) +oo ) ) |
115 |
114 92
|
fssresd |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( T |` k ) : k --> ( 0 [,) +oo ) ) |
116 |
|
c0ex |
|- 0 e. _V |
117 |
116
|
a1i |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> 0 e. _V ) |
118 |
115 111 117
|
fdmfifsupp |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( T |` k ) finSupp 0 ) |
119 |
21 109 111 113 115 118
|
gsumsubmcl |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( CCfld gsum ( T |` k ) ) e. ( 0 [,) +oo ) ) |
120 |
|
elrege0 |
|- ( ( CCfld gsum ( T |` k ) ) e. ( 0 [,) +oo ) <-> ( ( CCfld gsum ( T |` k ) ) e. RR /\ 0 <_ ( CCfld gsum ( T |` k ) ) ) ) |
121 |
120
|
simplbi |
|- ( ( CCfld gsum ( T |` k ) ) e. ( 0 [,) +oo ) -> ( CCfld gsum ( T |` k ) ) e. RR ) |
122 |
119 121
|
syl |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( CCfld gsum ( T |` k ) ) e. RR ) |
123 |
122
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( CCfld gsum ( T |` k ) ) e. RR ) |
124 |
|
simprl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> 0 < ( CCfld gsum ( T |` k ) ) ) |
125 |
123 124
|
elrpd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( CCfld gsum ( T |` k ) ) e. RR+ ) |
126 |
|
simprr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) |
127 |
|
fveq2 |
|- ( w = ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) -> ( F ` w ) = ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) ) |
128 |
127
|
breq1d |
|- ( w = ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) <-> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) ) |
129 |
128
|
elrab |
|- ( ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } <-> ( ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) ) |
130 |
126 129
|
sylib |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) ) |
131 |
130
|
simpld |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. D ) |
132 |
130
|
simprd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) ) |
133 |
94 95 97 98 99 100 101 102 103 104 105 106 125 131 132
|
jensenlem2 |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
134 |
|
fveq2 |
|- ( w = ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( F ` w ) = ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
135 |
134
|
breq1d |
|- ( w = ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) <-> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
136 |
135
|
elrab |
|- ( ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } <-> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) ) |
137 |
133 136
|
sylibr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ ( 0 < ( CCfld gsum ( T |` k ) ) /\ ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) |
138 |
137
|
expr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
139 |
93 138
|
embantd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( 0 < ( CCfld gsum ( T |` k ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
140 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
141 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
142 |
107 141
|
mp1i |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> CCfld e. Mnd ) |
143 |
110 91
|
ssfid |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( k u. { c } ) e. Fin ) |
144 |
143
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( k u. { c } ) e. Fin ) |
145 |
|
ssun2 |
|- { c } C_ ( k u. { c } ) |
146 |
|
vsnid |
|- c e. { c } |
147 |
145 146
|
sselii |
|- c e. ( k u. { c } ) |
148 |
147
|
a1i |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> c e. ( k u. { c } ) ) |
149 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
150 |
149
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
151 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
152 |
|
fss |
|- ( ( T : A --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> T : A --> RR ) |
153 |
5 151 152
|
sylancl |
|- ( ph -> T : A --> RR ) |
154 |
6 1
|
fssd |
|- ( ph -> X : A --> RR ) |
155 |
|
inidm |
|- ( A i^i A ) = A |
156 |
150 153 154 4 4 155
|
off |
|- ( ph -> ( T oF x. X ) : A --> RR ) |
157 |
|
ax-resscn |
|- RR C_ CC |
158 |
|
fss |
|- ( ( ( T oF x. X ) : A --> RR /\ RR C_ CC ) -> ( T oF x. X ) : A --> CC ) |
159 |
156 157 158
|
sylancl |
|- ( ph -> ( T oF x. X ) : A --> CC ) |
160 |
159
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T oF x. X ) : A --> CC ) |
161 |
91
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( k u. { c } ) C_ A ) |
162 |
160 161
|
fssresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. X ) |` ( k u. { c } ) ) : ( k u. { c } ) --> CC ) |
163 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> T : A --> ( 0 [,) +oo ) ) |
164 |
110
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> A e. Fin ) |
165 |
163 164
|
fexd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> T e. _V ) |
166 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> X : A --> D ) |
167 |
166 164
|
fexd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> X e. _V ) |
168 |
|
offres |
|- ( ( T e. _V /\ X e. _V ) -> ( ( T oF x. X ) |` ( k u. { c } ) ) = ( ( T |` ( k u. { c } ) ) oF x. ( X |` ( k u. { c } ) ) ) ) |
169 |
165 167 168
|
syl2anc |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. X ) |` ( k u. { c } ) ) = ( ( T |` ( k u. { c } ) ) oF x. ( X |` ( k u. { c } ) ) ) ) |
170 |
169
|
oveq1d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. X ) |` ( k u. { c } ) ) supp 0 ) = ( ( ( T |` ( k u. { c } ) ) oF x. ( X |` ( k u. { c } ) ) ) supp 0 ) ) |
171 |
151 157
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
172 |
|
fss |
|- ( ( T : A --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ CC ) -> T : A --> CC ) |
173 |
163 171 172
|
sylancl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> T : A --> CC ) |
174 |
173 161
|
fssresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T |` ( k u. { c } ) ) : ( k u. { c } ) --> CC ) |
175 |
|
eldifi |
|- ( x e. ( ( k u. { c } ) \ { c } ) -> x e. ( k u. { c } ) ) |
176 |
175
|
adantl |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. ( ( k u. { c } ) \ { c } ) ) -> x e. ( k u. { c } ) ) |
177 |
176
|
fvresd |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. ( ( k u. { c } ) \ { c } ) ) -> ( ( T |` ( k u. { c } ) ) ` x ) = ( T ` x ) ) |
178 |
|
difun2 |
|- ( ( k u. { c } ) \ { c } ) = ( k \ { c } ) |
179 |
|
difss |
|- ( k \ { c } ) C_ k |
180 |
178 179
|
eqsstri |
|- ( ( k u. { c } ) \ { c } ) C_ k |
181 |
180
|
sseli |
|- ( x e. ( ( k u. { c } ) \ { c } ) -> x e. k ) |
182 |
|
simpr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> 0 = ( CCfld gsum ( T |` k ) ) ) |
183 |
92
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> k C_ A ) |
184 |
163 183
|
feqresmpt |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T |` k ) = ( x e. k |-> ( T ` x ) ) ) |
185 |
184
|
oveq2d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( T |` k ) ) = ( CCfld gsum ( x e. k |-> ( T ` x ) ) ) ) |
186 |
111
|
adantr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> k e. Fin ) |
187 |
183
|
sselda |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> x e. A ) |
188 |
163
|
ffvelrnda |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. A ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
189 |
187 188
|
syldan |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
190 |
171 189
|
sselid |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> ( T ` x ) e. CC ) |
191 |
186 190
|
gsumfsum |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( x e. k |-> ( T ` x ) ) ) = sum_ x e. k ( T ` x ) ) |
192 |
182 185 191
|
3eqtrrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> sum_ x e. k ( T ` x ) = 0 ) |
193 |
|
elrege0 |
|- ( ( T ` x ) e. ( 0 [,) +oo ) <-> ( ( T ` x ) e. RR /\ 0 <_ ( T ` x ) ) ) |
194 |
189 193
|
sylib |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> ( ( T ` x ) e. RR /\ 0 <_ ( T ` x ) ) ) |
195 |
194
|
simpld |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> ( T ` x ) e. RR ) |
196 |
194
|
simprd |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> 0 <_ ( T ` x ) ) |
197 |
186 195 196
|
fsum00 |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( sum_ x e. k ( T ` x ) = 0 <-> A. x e. k ( T ` x ) = 0 ) ) |
198 |
192 197
|
mpbid |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> A. x e. k ( T ` x ) = 0 ) |
199 |
198
|
r19.21bi |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. k ) -> ( T ` x ) = 0 ) |
200 |
181 199
|
sylan2 |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. ( ( k u. { c } ) \ { c } ) ) -> ( T ` x ) = 0 ) |
201 |
177 200
|
eqtrd |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. ( ( k u. { c } ) \ { c } ) ) -> ( ( T |` ( k u. { c } ) ) ` x ) = 0 ) |
202 |
174 201
|
suppss |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T |` ( k u. { c } ) ) supp 0 ) C_ { c } ) |
203 |
|
mul02 |
|- ( x e. CC -> ( 0 x. x ) = 0 ) |
204 |
203
|
adantl |
|- ( ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) /\ x e. CC ) -> ( 0 x. x ) = 0 ) |
205 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> D C_ RR ) |
206 |
205 157
|
sstrdi |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> D C_ CC ) |
207 |
166 206
|
fssd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> X : A --> CC ) |
208 |
207 161
|
fssresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( X |` ( k u. { c } ) ) : ( k u. { c } ) --> CC ) |
209 |
116
|
a1i |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> 0 e. _V ) |
210 |
202 204 174 208 144 209
|
suppssof1 |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T |` ( k u. { c } ) ) oF x. ( X |` ( k u. { c } ) ) ) supp 0 ) C_ { c } ) |
211 |
170 210
|
eqsstrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. X ) |` ( k u. { c } ) ) supp 0 ) C_ { c } ) |
212 |
140 21 142 144 148 162 211
|
gsumpt |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) = ( ( ( T oF x. X ) |` ( k u. { c } ) ) ` c ) ) |
213 |
148
|
fvresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. X ) |` ( k u. { c } ) ) ` c ) = ( ( T oF x. X ) ` c ) ) |
214 |
163
|
ffnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> T Fn A ) |
215 |
166
|
ffnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> X Fn A ) |
216 |
161 148
|
sseldd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> c e. A ) |
217 |
|
fnfvof |
|- ( ( ( T Fn A /\ X Fn A ) /\ ( A e. Fin /\ c e. A ) ) -> ( ( T oF x. X ) ` c ) = ( ( T ` c ) x. ( X ` c ) ) ) |
218 |
214 215 164 216 217
|
syl22anc |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. X ) ` c ) = ( ( T ` c ) x. ( X ` c ) ) ) |
219 |
212 213 218
|
3eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) = ( ( T ` c ) x. ( X ` c ) ) ) |
220 |
140 21 142 144 148 174 202
|
gsumpt |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( T |` ( k u. { c } ) ) ) = ( ( T |` ( k u. { c } ) ) ` c ) ) |
221 |
148
|
fvresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T |` ( k u. { c } ) ) ` c ) = ( T ` c ) ) |
222 |
220 221
|
eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( T |` ( k u. { c } ) ) ) = ( T ` c ) ) |
223 |
219 222
|
oveq12d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) = ( ( ( T ` c ) x. ( X ` c ) ) / ( T ` c ) ) ) |
224 |
207 216
|
ffvelrnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( X ` c ) e. CC ) |
225 |
173 216
|
ffvelrnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T ` c ) e. CC ) |
226 |
|
simplrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) |
227 |
226 222
|
breqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> 0 < ( T ` c ) ) |
228 |
227
|
gt0ne0d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T ` c ) =/= 0 ) |
229 |
224 225 228
|
divcan3d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T ` c ) x. ( X ` c ) ) / ( T ` c ) ) = ( X ` c ) ) |
230 |
223 229
|
eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) = ( X ` c ) ) |
231 |
166 216
|
ffvelrnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( X ` c ) e. D ) |
232 |
230 231
|
eqeltrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. D ) |
233 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> F : D --> RR ) |
234 |
233 231
|
ffvelrnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F ` ( X ` c ) ) e. RR ) |
235 |
234
|
leidd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F ` ( X ` c ) ) <_ ( F ` ( X ` c ) ) ) |
236 |
230
|
fveq2d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) = ( F ` ( X ` c ) ) ) |
237 |
|
fco |
|- ( ( F : D --> RR /\ X : A --> D ) -> ( F o. X ) : A --> RR ) |
238 |
2 6 237
|
syl2anc |
|- ( ph -> ( F o. X ) : A --> RR ) |
239 |
150 153 238 4 4 155
|
off |
|- ( ph -> ( T oF x. ( F o. X ) ) : A --> RR ) |
240 |
|
fss |
|- ( ( ( T oF x. ( F o. X ) ) : A --> RR /\ RR C_ CC ) -> ( T oF x. ( F o. X ) ) : A --> CC ) |
241 |
239 157 240
|
sylancl |
|- ( ph -> ( T oF x. ( F o. X ) ) : A --> CC ) |
242 |
241
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( T oF x. ( F o. X ) ) : A --> CC ) |
243 |
242 161
|
fssresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) : ( k u. { c } ) --> CC ) |
244 |
238
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F o. X ) : A --> RR ) |
245 |
244 164
|
fexd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F o. X ) e. _V ) |
246 |
|
offres |
|- ( ( T e. _V /\ ( F o. X ) e. _V ) -> ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) = ( ( T |` ( k u. { c } ) ) oF x. ( ( F o. X ) |` ( k u. { c } ) ) ) ) |
247 |
165 245 246
|
syl2anc |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) = ( ( T |` ( k u. { c } ) ) oF x. ( ( F o. X ) |` ( k u. { c } ) ) ) ) |
248 |
247
|
oveq1d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) supp 0 ) = ( ( ( T |` ( k u. { c } ) ) oF x. ( ( F o. X ) |` ( k u. { c } ) ) ) supp 0 ) ) |
249 |
|
fss |
|- ( ( ( F o. X ) : A --> RR /\ RR C_ CC ) -> ( F o. X ) : A --> CC ) |
250 |
244 157 249
|
sylancl |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F o. X ) : A --> CC ) |
251 |
250 161
|
fssresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( F o. X ) |` ( k u. { c } ) ) : ( k u. { c } ) --> CC ) |
252 |
202 204 174 251 144 209
|
suppssof1 |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T |` ( k u. { c } ) ) oF x. ( ( F o. X ) |` ( k u. { c } ) ) ) supp 0 ) C_ { c } ) |
253 |
248 252
|
eqsstrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) supp 0 ) C_ { c } ) |
254 |
140 21 142 144 148 243 253
|
gsumpt |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) = ( ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ` c ) ) |
255 |
148
|
fvresd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ` c ) = ( ( T oF x. ( F o. X ) ) ` c ) ) |
256 |
2
|
ffnd |
|- ( ph -> F Fn D ) |
257 |
|
fnfco |
|- ( ( F Fn D /\ X : A --> D ) -> ( F o. X ) Fn A ) |
258 |
256 6 257
|
syl2anc |
|- ( ph -> ( F o. X ) Fn A ) |
259 |
258
|
ad3antrrr |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F o. X ) Fn A ) |
260 |
|
fnfvof |
|- ( ( ( T Fn A /\ ( F o. X ) Fn A ) /\ ( A e. Fin /\ c e. A ) ) -> ( ( T oF x. ( F o. X ) ) ` c ) = ( ( T ` c ) x. ( ( F o. X ) ` c ) ) ) |
261 |
214 259 164 216 260
|
syl22anc |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. ( F o. X ) ) ` c ) = ( ( T ` c ) x. ( ( F o. X ) ` c ) ) ) |
262 |
|
fvco3 |
|- ( ( X : A --> D /\ c e. A ) -> ( ( F o. X ) ` c ) = ( F ` ( X ` c ) ) ) |
263 |
166 216 262
|
syl2anc |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( F o. X ) ` c ) = ( F ` ( X ` c ) ) ) |
264 |
263
|
oveq2d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T ` c ) x. ( ( F o. X ) ` c ) ) = ( ( T ` c ) x. ( F ` ( X ` c ) ) ) ) |
265 |
261 264
|
eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( T oF x. ( F o. X ) ) ` c ) = ( ( T ` c ) x. ( F ` ( X ` c ) ) ) ) |
266 |
254 255 265
|
3eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) = ( ( T ` c ) x. ( F ` ( X ` c ) ) ) ) |
267 |
266 222
|
oveq12d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) = ( ( ( T ` c ) x. ( F ` ( X ` c ) ) ) / ( T ` c ) ) ) |
268 |
234
|
recnd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F ` ( X ` c ) ) e. CC ) |
269 |
268 225 228
|
divcan3d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( ( T ` c ) x. ( F ` ( X ` c ) ) ) / ( T ` c ) ) = ( F ` ( X ` c ) ) ) |
270 |
267 269
|
eqtrd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) = ( F ` ( X ` c ) ) ) |
271 |
235 236 270
|
3brtr4d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) |
272 |
135 232 271
|
elrabd |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) |
273 |
272
|
a1d |
|- ( ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) /\ 0 = ( CCfld gsum ( T |` k ) ) ) -> ( ( 0 < ( CCfld gsum ( T |` k ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
274 |
120
|
simprbi |
|- ( ( CCfld gsum ( T |` k ) ) e. ( 0 [,) +oo ) -> 0 <_ ( CCfld gsum ( T |` k ) ) ) |
275 |
119 274
|
syl |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> 0 <_ ( CCfld gsum ( T |` k ) ) ) |
276 |
|
leloe |
|- ( ( 0 e. RR /\ ( CCfld gsum ( T |` k ) ) e. RR ) -> ( 0 <_ ( CCfld gsum ( T |` k ) ) <-> ( 0 < ( CCfld gsum ( T |` k ) ) \/ 0 = ( CCfld gsum ( T |` k ) ) ) ) ) |
277 |
85 122 276
|
sylancr |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( 0 <_ ( CCfld gsum ( T |` k ) ) <-> ( 0 < ( CCfld gsum ( T |` k ) ) \/ 0 = ( CCfld gsum ( T |` k ) ) ) ) ) |
278 |
275 277
|
mpbid |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( 0 < ( CCfld gsum ( T |` k ) ) \/ 0 = ( CCfld gsum ( T |` k ) ) ) ) |
279 |
139 273 278
|
mpjaodan |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( ( 0 < ( CCfld gsum ( T |` k ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
280 |
92 279
|
embantd |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( ( k C_ A -> ( 0 < ( CCfld gsum ( T |` k ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
281 |
90 280
|
syl5bi |
|- ( ( ( ph /\ -. c e. k ) /\ ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) ) -> ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) |
282 |
281
|
ex |
|- ( ( ph /\ -. c e. k ) -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) |
283 |
282
|
com23 |
|- ( ( ph /\ -. c e. k ) -> ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) |
284 |
283
|
expcom |
|- ( -. c e. k -> ( ph -> ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) ) |
285 |
284
|
adantl |
|- ( ( k e. Fin /\ -. c e. k ) -> ( ph -> ( ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) ) |
286 |
285
|
a2d |
|- ( ( k e. Fin /\ -. c e. k ) -> ( ( ph -> ( ( k C_ A /\ 0 < ( CCfld gsum ( T |` k ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` k ) ) / ( CCfld gsum ( T |` k ) ) ) } ) ) -> ( ph -> ( ( ( k u. { c } ) C_ A /\ 0 < ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( k u. { c } ) ) ) / ( CCfld gsum ( T |` ( k u. { c } ) ) ) ) } ) ) ) ) |
287 |
36 52 68 84 89 286
|
findcard2s |
|- ( A e. Fin -> ( ph -> ( ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) ) ) |
288 |
4 287
|
mpcom |
|- ( ph -> ( ( A C_ A /\ 0 < ( CCfld gsum ( T |` A ) ) ) -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) ) |
289 |
15 288
|
mpd |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } ) |
290 |
156
|
ffnd |
|- ( ph -> ( T oF x. X ) Fn A ) |
291 |
|
fnresdm |
|- ( ( T oF x. X ) Fn A -> ( ( T oF x. X ) |` A ) = ( T oF x. X ) ) |
292 |
290 291
|
syl |
|- ( ph -> ( ( T oF x. X ) |` A ) = ( T oF x. X ) ) |
293 |
292
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` A ) ) = ( CCfld gsum ( T oF x. X ) ) ) |
294 |
293 12
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) = ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) ) |
295 |
9 258 4 4 155
|
offn |
|- ( ph -> ( T oF x. ( F o. X ) ) Fn A ) |
296 |
|
fnresdm |
|- ( ( T oF x. ( F o. X ) ) Fn A -> ( ( T oF x. ( F o. X ) ) |` A ) = ( T oF x. ( F o. X ) ) ) |
297 |
295 296
|
syl |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` A ) = ( T oF x. ( F o. X ) ) ) |
298 |
297
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) = ( CCfld gsum ( T oF x. ( F o. X ) ) ) ) |
299 |
298 12
|
oveq12d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) = ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) ) |
300 |
299
|
breq2d |
|- ( ph -> ( ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) <-> ( F ` w ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) ) ) |
301 |
300
|
rabbidv |
|- ( ph -> { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` A ) ) / ( CCfld gsum ( T |` A ) ) ) } = { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) } ) |
302 |
289 294 301
|
3eltr3d |
|- ( ph -> ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) } ) |
303 |
|
fveq2 |
|- ( w = ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) -> ( F ` w ) = ( F ` ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) ) ) |
304 |
303
|
breq1d |
|- ( w = ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) -> ( ( F ` w ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) <-> ( F ` ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) ) ) |
305 |
304
|
elrab |
|- ( ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) e. { w e. D | ( F ` w ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) } <-> ( ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) e. D /\ ( F ` ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) ) ) |
306 |
302 305
|
sylib |
|- ( ph -> ( ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) e. D /\ ( F ` ( ( CCfld gsum ( T oF x. X ) ) / ( CCfld gsum T ) ) ) <_ ( ( CCfld gsum ( T oF x. ( F o. X ) ) ) / ( CCfld gsum T ) ) ) ) |