Step |
Hyp |
Ref |
Expression |
1 |
|
jensen.1 |
|- ( ph -> D C_ RR ) |
2 |
|
jensen.2 |
|- ( ph -> F : D --> RR ) |
3 |
|
jensen.3 |
|- ( ( ph /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D ) |
4 |
|
jensen.4 |
|- ( ph -> A e. Fin ) |
5 |
|
jensen.5 |
|- ( ph -> T : A --> ( 0 [,) +oo ) ) |
6 |
|
jensen.6 |
|- ( ph -> X : A --> D ) |
7 |
|
jensen.7 |
|- ( ph -> 0 < ( CCfld gsum T ) ) |
8 |
|
jensen.8 |
|- ( ( ph /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
9 |
|
jensenlem.1 |
|- ( ph -> -. z e. B ) |
10 |
|
jensenlem.2 |
|- ( ph -> ( B u. { z } ) C_ A ) |
11 |
|
jensenlem.s |
|- S = ( CCfld gsum ( T |` B ) ) |
12 |
|
jensenlem.l |
|- L = ( CCfld gsum ( T |` ( B u. { z } ) ) ) |
13 |
|
jensenlem.3 |
|- ( ph -> S e. RR+ ) |
14 |
|
jensenlem.4 |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D ) |
15 |
|
jensenlem.5 |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) |
16 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
17 |
|
cnring |
|- CCfld e. Ring |
18 |
|
ringabl |
|- ( CCfld e. Ring -> CCfld e. Abel ) |
19 |
17 18
|
mp1i |
|- ( ph -> CCfld e. Abel ) |
20 |
10
|
unssad |
|- ( ph -> B C_ A ) |
21 |
4 20
|
ssfid |
|- ( ph -> B e. Fin ) |
22 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
23 |
22
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
24 |
|
subrgsubg |
|- ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) |
25 |
23 24
|
mp1i |
|- ( ph -> RR e. ( SubGrp ` CCfld ) ) |
26 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
27 |
26
|
adantl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
28 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
29 |
|
fss |
|- ( ( T : A --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> T : A --> RR ) |
30 |
5 28 29
|
sylancl |
|- ( ph -> T : A --> RR ) |
31 |
6 1
|
fssd |
|- ( ph -> X : A --> RR ) |
32 |
|
inidm |
|- ( A i^i A ) = A |
33 |
27 30 31 4 4 32
|
off |
|- ( ph -> ( T oF x. X ) : A --> RR ) |
34 |
33 20
|
fssresd |
|- ( ph -> ( ( T oF x. X ) |` B ) : B --> RR ) |
35 |
|
c0ex |
|- 0 e. _V |
36 |
35
|
a1i |
|- ( ph -> 0 e. _V ) |
37 |
34 21 36
|
fdmfifsupp |
|- ( ph -> ( ( T oF x. X ) |` B ) finSupp 0 ) |
38 |
16 19 21 25 34 37
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. RR ) |
39 |
38
|
recnd |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. CC ) |
40 |
|
ax-resscn |
|- RR C_ CC |
41 |
28 40
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
42 |
10
|
unssbd |
|- ( ph -> { z } C_ A ) |
43 |
|
vex |
|- z e. _V |
44 |
43
|
snss |
|- ( z e. A <-> { z } C_ A ) |
45 |
42 44
|
sylibr |
|- ( ph -> z e. A ) |
46 |
5 45
|
ffvelrnd |
|- ( ph -> ( T ` z ) e. ( 0 [,) +oo ) ) |
47 |
41 46
|
sselid |
|- ( ph -> ( T ` z ) e. CC ) |
48 |
6 45
|
ffvelrnd |
|- ( ph -> ( X ` z ) e. D ) |
49 |
1 48
|
sseldd |
|- ( ph -> ( X ` z ) e. RR ) |
50 |
49
|
recnd |
|- ( ph -> ( X ` z ) e. CC ) |
51 |
47 50
|
mulcld |
|- ( ph -> ( ( T ` z ) x. ( X ` z ) ) e. CC ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12
|
jensenlem1 |
|- ( ph -> L = ( S + ( T ` z ) ) ) |
53 |
13
|
rpred |
|- ( ph -> S e. RR ) |
54 |
|
elrege0 |
|- ( ( T ` z ) e. ( 0 [,) +oo ) <-> ( ( T ` z ) e. RR /\ 0 <_ ( T ` z ) ) ) |
55 |
54
|
simplbi |
|- ( ( T ` z ) e. ( 0 [,) +oo ) -> ( T ` z ) e. RR ) |
56 |
46 55
|
syl |
|- ( ph -> ( T ` z ) e. RR ) |
57 |
53 56
|
readdcld |
|- ( ph -> ( S + ( T ` z ) ) e. RR ) |
58 |
52 57
|
eqeltrd |
|- ( ph -> L e. RR ) |
59 |
58
|
recnd |
|- ( ph -> L e. CC ) |
60 |
|
0red |
|- ( ph -> 0 e. RR ) |
61 |
13
|
rpgt0d |
|- ( ph -> 0 < S ) |
62 |
54
|
simprbi |
|- ( ( T ` z ) e. ( 0 [,) +oo ) -> 0 <_ ( T ` z ) ) |
63 |
46 62
|
syl |
|- ( ph -> 0 <_ ( T ` z ) ) |
64 |
53 56
|
addge01d |
|- ( ph -> ( 0 <_ ( T ` z ) <-> S <_ ( S + ( T ` z ) ) ) ) |
65 |
63 64
|
mpbid |
|- ( ph -> S <_ ( S + ( T ` z ) ) ) |
66 |
65 52
|
breqtrrd |
|- ( ph -> S <_ L ) |
67 |
60 53 58 61 66
|
ltletrd |
|- ( ph -> 0 < L ) |
68 |
67
|
gt0ne0d |
|- ( ph -> L =/= 0 ) |
69 |
39 51 59 68
|
divdird |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) ) |
70 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
71 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
72 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
73 |
17 72
|
mp1i |
|- ( ph -> CCfld e. CMnd ) |
74 |
20
|
sselda |
|- ( ( ph /\ x e. B ) -> x e. A ) |
75 |
5
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
76 |
74 75
|
syldan |
|- ( ( ph /\ x e. B ) -> ( T ` x ) e. ( 0 [,) +oo ) ) |
77 |
41 76
|
sselid |
|- ( ( ph /\ x e. B ) -> ( T ` x ) e. CC ) |
78 |
1
|
adantr |
|- ( ( ph /\ x e. B ) -> D C_ RR ) |
79 |
6
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( X ` x ) e. D ) |
80 |
74 79
|
syldan |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. D ) |
81 |
78 80
|
sseldd |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. RR ) |
82 |
81
|
recnd |
|- ( ( ph /\ x e. B ) -> ( X ` x ) e. CC ) |
83 |
77 82
|
mulcld |
|- ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( X ` x ) ) e. CC ) |
84 |
|
fveq2 |
|- ( x = z -> ( T ` x ) = ( T ` z ) ) |
85 |
|
fveq2 |
|- ( x = z -> ( X ` x ) = ( X ` z ) ) |
86 |
84 85
|
oveq12d |
|- ( x = z -> ( ( T ` x ) x. ( X ` x ) ) = ( ( T ` z ) x. ( X ` z ) ) ) |
87 |
70 71 73 21 83 45 9 51 86
|
gsumunsn |
|- ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
88 |
5
|
feqmptd |
|- ( ph -> T = ( x e. A |-> ( T ` x ) ) ) |
89 |
6
|
feqmptd |
|- ( ph -> X = ( x e. A |-> ( X ` x ) ) ) |
90 |
4 75 79 88 89
|
offval2 |
|- ( ph -> ( T oF x. X ) = ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
91 |
90
|
reseq1d |
|- ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) ) |
92 |
10
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
93 |
91 92
|
eqtrd |
|- ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
94 |
93
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) ) |
95 |
90
|
reseq1d |
|- ( ph -> ( ( T oF x. X ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) ) |
96 |
20
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
97 |
95 96
|
eqtrd |
|- ( ph -> ( ( T oF x. X ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) |
98 |
97
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) ) |
99 |
98
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
100 |
87 94 99
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) ) |
101 |
100
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) ) |
102 |
53
|
recnd |
|- ( ph -> S e. CC ) |
103 |
13
|
rpne0d |
|- ( ph -> S =/= 0 ) |
104 |
39 102 59 103 68
|
dmdcand |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) ) |
105 |
59 102 59 68
|
divsubdird |
|- ( ph -> ( ( L - S ) / L ) = ( ( L / L ) - ( S / L ) ) ) |
106 |
102 47 52
|
mvrladdd |
|- ( ph -> ( L - S ) = ( T ` z ) ) |
107 |
106
|
oveq1d |
|- ( ph -> ( ( L - S ) / L ) = ( ( T ` z ) / L ) ) |
108 |
59 68
|
dividd |
|- ( ph -> ( L / L ) = 1 ) |
109 |
108
|
oveq1d |
|- ( ph -> ( ( L / L ) - ( S / L ) ) = ( 1 - ( S / L ) ) ) |
110 |
105 107 109
|
3eqtr3rd |
|- ( ph -> ( 1 - ( S / L ) ) = ( ( T ` z ) / L ) ) |
111 |
110
|
oveq1d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) ) |
112 |
47 50 59 68
|
div23d |
|- ( ph -> ( ( ( T ` z ) x. ( X ` z ) ) / L ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) ) |
113 |
111 112
|
eqtr4d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) |
114 |
104 113
|
oveq12d |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) ) |
115 |
69 101 114
|
3eqtr4d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) |
116 |
53 58 68
|
redivcld |
|- ( ph -> ( S / L ) e. RR ) |
117 |
13
|
rpge0d |
|- ( ph -> 0 <_ S ) |
118 |
|
divge0 |
|- ( ( ( S e. RR /\ 0 <_ S ) /\ ( L e. RR /\ 0 < L ) ) -> 0 <_ ( S / L ) ) |
119 |
53 117 58 67 118
|
syl22anc |
|- ( ph -> 0 <_ ( S / L ) ) |
120 |
59
|
mulid1d |
|- ( ph -> ( L x. 1 ) = L ) |
121 |
66 120
|
breqtrrd |
|- ( ph -> S <_ ( L x. 1 ) ) |
122 |
|
1red |
|- ( ph -> 1 e. RR ) |
123 |
|
ledivmul |
|- ( ( S e. RR /\ 1 e. RR /\ ( L e. RR /\ 0 < L ) ) -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) ) |
124 |
53 122 58 67 123
|
syl112anc |
|- ( ph -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) ) |
125 |
121 124
|
mpbird |
|- ( ph -> ( S / L ) <_ 1 ) |
126 |
|
elicc01 |
|- ( ( S / L ) e. ( 0 [,] 1 ) <-> ( ( S / L ) e. RR /\ 0 <_ ( S / L ) /\ ( S / L ) <_ 1 ) ) |
127 |
116 119 125 126
|
syl3anbrc |
|- ( ph -> ( S / L ) e. ( 0 [,] 1 ) ) |
128 |
14 48 127
|
3jca |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) ) |
129 |
1 3
|
cvxcl |
|- ( ( ph /\ ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) ) -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D ) |
130 |
128 129
|
mpdan |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D ) |
131 |
115 130
|
eqeltrd |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D ) |
132 |
2 130
|
ffvelrnd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) e. RR ) |
133 |
2 14
|
ffvelrnd |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR ) |
134 |
116 133
|
remulcld |
|- ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) e. RR ) |
135 |
2 48
|
ffvelrnd |
|- ( ph -> ( F ` ( X ` z ) ) e. RR ) |
136 |
56 135
|
remulcld |
|- ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. RR ) |
137 |
136 58 68
|
redivcld |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) e. RR ) |
138 |
134 137
|
readdcld |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) e. RR ) |
139 |
|
fco |
|- ( ( F : D --> RR /\ X : A --> D ) -> ( F o. X ) : A --> RR ) |
140 |
2 6 139
|
syl2anc |
|- ( ph -> ( F o. X ) : A --> RR ) |
141 |
27 30 140 4 4 32
|
off |
|- ( ph -> ( T oF x. ( F o. X ) ) : A --> RR ) |
142 |
141 20
|
fssresd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) : B --> RR ) |
143 |
142 21 36
|
fdmfifsupp |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) finSupp 0 ) |
144 |
16 19 21 25 142 143
|
gsumsubgcl |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. RR ) |
145 |
144 53 103
|
redivcld |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR ) |
146 |
116 145
|
remulcld |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) e. RR ) |
147 |
|
1re |
|- 1 e. RR |
148 |
|
resubcl |
|- ( ( 1 e. RR /\ ( S / L ) e. RR ) -> ( 1 - ( S / L ) ) e. RR ) |
149 |
147 116 148
|
sylancr |
|- ( ph -> ( 1 - ( S / L ) ) e. RR ) |
150 |
149 135
|
remulcld |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) e. RR ) |
151 |
146 150
|
readdcld |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) e. RR ) |
152 |
|
oveq2 |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. x ) = ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
153 |
152
|
fvoveq1d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) ) |
154 |
|
fveq2 |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` x ) = ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
155 |
154
|
oveq2d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. ( F ` x ) ) = ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) ) |
156 |
155
|
oveq1d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) |
157 |
153 156
|
breq12d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) |
158 |
157
|
imbi2d |
|- ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) ) |
159 |
|
oveq2 |
|- ( y = ( X ` z ) -> ( ( 1 - t ) x. y ) = ( ( 1 - t ) x. ( X ` z ) ) ) |
160 |
159
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) = ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) |
161 |
160
|
fveq2d |
|- ( y = ( X ` z ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) ) |
162 |
|
fveq2 |
|- ( y = ( X ` z ) -> ( F ` y ) = ( F ` ( X ` z ) ) ) |
163 |
162
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( 1 - t ) x. ( F ` y ) ) = ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) |
164 |
163
|
oveq2d |
|- ( y = ( X ` z ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) |
165 |
161 164
|
breq12d |
|- ( y = ( X ` z ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) ) |
166 |
165
|
imbi2d |
|- ( y = ( X ` z ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) ) ) |
167 |
|
oveq1 |
|- ( t = ( S / L ) -> ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) |
168 |
|
oveq2 |
|- ( t = ( S / L ) -> ( 1 - t ) = ( 1 - ( S / L ) ) ) |
169 |
168
|
oveq1d |
|- ( t = ( S / L ) -> ( ( 1 - t ) x. ( X ` z ) ) = ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) |
170 |
167 169
|
oveq12d |
|- ( t = ( S / L ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) |
171 |
170
|
fveq2d |
|- ( t = ( S / L ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) ) |
172 |
|
oveq1 |
|- ( t = ( S / L ) -> ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) = ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) ) |
173 |
168
|
oveq1d |
|- ( t = ( S / L ) -> ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) |
174 |
172 173
|
oveq12d |
|- ( t = ( S / L ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
175 |
171 174
|
breq12d |
|- ( t = ( S / L ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) <-> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
176 |
175
|
imbi2d |
|- ( t = ( S / L ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) <-> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) ) |
177 |
8
|
expcom |
|- ( ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) |
178 |
158 166 176 177
|
vtocl3ga |
|- ( ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
179 |
14 48 127 178
|
syl3anc |
|- ( ph -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) |
180 |
179
|
pm2.43i |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
181 |
110
|
oveq1d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) ) |
182 |
135
|
recnd |
|- ( ph -> ( F ` ( X ` z ) ) e. CC ) |
183 |
47 182 59 68
|
div23d |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) ) |
184 |
181 183
|
eqtr4d |
|- ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) |
185 |
184
|
oveq2d |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
186 |
180 185
|
breqtrd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
187 |
183 181
|
eqtr4d |
|- ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) |
188 |
187
|
oveq2d |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
189 |
53 58 61 67
|
divgt0d |
|- ( ph -> 0 < ( S / L ) ) |
190 |
|
lemul2 |
|- ( ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR /\ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR /\ ( ( S / L ) e. RR /\ 0 < ( S / L ) ) ) -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) ) |
191 |
133 145 116 189 190
|
syl112anc |
|- ( ph -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) ) |
192 |
15 191
|
mpbid |
|- ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) |
193 |
134 146 150 192
|
leadd1dd |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
194 |
188 193
|
eqbrtrd |
|- ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
195 |
132 138 151 186 194
|
letrd |
|- ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
196 |
115
|
fveq2d |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) ) |
197 |
144
|
recnd |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. CC ) |
198 |
136
|
recnd |
|- ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. CC ) |
199 |
197 198 59 68
|
divdird |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
200 |
28 75
|
sselid |
|- ( ( ph /\ x e. A ) -> ( T ` x ) e. RR ) |
201 |
2
|
ffvelrnda |
|- ( ( ph /\ ( X ` x ) e. D ) -> ( F ` ( X ` x ) ) e. RR ) |
202 |
79 201
|
syldan |
|- ( ( ph /\ x e. A ) -> ( F ` ( X ` x ) ) e. RR ) |
203 |
200 202
|
remulcld |
|- ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. RR ) |
204 |
203
|
recnd |
|- ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC ) |
205 |
74 204
|
syldan |
|- ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC ) |
206 |
85
|
fveq2d |
|- ( x = z -> ( F ` ( X ` x ) ) = ( F ` ( X ` z ) ) ) |
207 |
84 206
|
oveq12d |
|- ( x = z -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) = ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) |
208 |
70 71 73 21 205 45 9 198 207
|
gsumunsn |
|- ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
209 |
2
|
feqmptd |
|- ( ph -> F = ( y e. D |-> ( F ` y ) ) ) |
210 |
|
fveq2 |
|- ( y = ( X ` x ) -> ( F ` y ) = ( F ` ( X ` x ) ) ) |
211 |
79 89 209 210
|
fmptco |
|- ( ph -> ( F o. X ) = ( x e. A |-> ( F ` ( X ` x ) ) ) ) |
212 |
4 75 202 88 211
|
offval2 |
|- ( ph -> ( T oF x. ( F o. X ) ) = ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
213 |
212
|
reseq1d |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) ) |
214 |
10
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
215 |
213 214
|
eqtrd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
216 |
215
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) ) |
217 |
212
|
reseq1d |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) ) |
218 |
20
|
resmptd |
|- ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
219 |
217 218
|
eqtrd |
|- ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) |
220 |
219
|
oveq2d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) ) |
221 |
220
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
222 |
208 216 221
|
3eqtr4d |
|- ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) ) |
223 |
222
|
oveq1d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) ) |
224 |
197 102 59 103 68
|
dmdcand |
|- ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) ) |
225 |
224 184
|
oveq12d |
|- ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) ) |
226 |
199 223 225
|
3eqtr4d |
|- ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) |
227 |
195 196 226
|
3brtr4d |
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) |
228 |
131 227
|
jca |
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) ) |