Metamath Proof Explorer


Theorem jensenlem2

Description: Lemma for jensen . (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Hypotheses jensen.1
|- ( ph -> D C_ RR )
jensen.2
|- ( ph -> F : D --> RR )
jensen.3
|- ( ( ph /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D )
jensen.4
|- ( ph -> A e. Fin )
jensen.5
|- ( ph -> T : A --> ( 0 [,) +oo ) )
jensen.6
|- ( ph -> X : A --> D )
jensen.7
|- ( ph -> 0 < ( CCfld gsum T ) )
jensen.8
|- ( ( ph /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) )
jensenlem.1
|- ( ph -> -. z e. B )
jensenlem.2
|- ( ph -> ( B u. { z } ) C_ A )
jensenlem.s
|- S = ( CCfld gsum ( T |` B ) )
jensenlem.l
|- L = ( CCfld gsum ( T |` ( B u. { z } ) ) )
jensenlem.3
|- ( ph -> S e. RR+ )
jensenlem.4
|- ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D )
jensenlem.5
|- ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) )
Assertion jensenlem2
|- ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) )

Proof

Step Hyp Ref Expression
1 jensen.1
 |-  ( ph -> D C_ RR )
2 jensen.2
 |-  ( ph -> F : D --> RR )
3 jensen.3
 |-  ( ( ph /\ ( a e. D /\ b e. D ) ) -> ( a [,] b ) C_ D )
4 jensen.4
 |-  ( ph -> A e. Fin )
5 jensen.5
 |-  ( ph -> T : A --> ( 0 [,) +oo ) )
6 jensen.6
 |-  ( ph -> X : A --> D )
7 jensen.7
 |-  ( ph -> 0 < ( CCfld gsum T ) )
8 jensen.8
 |-  ( ( ph /\ ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) )
9 jensenlem.1
 |-  ( ph -> -. z e. B )
10 jensenlem.2
 |-  ( ph -> ( B u. { z } ) C_ A )
11 jensenlem.s
 |-  S = ( CCfld gsum ( T |` B ) )
12 jensenlem.l
 |-  L = ( CCfld gsum ( T |` ( B u. { z } ) ) )
13 jensenlem.3
 |-  ( ph -> S e. RR+ )
14 jensenlem.4
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D )
15 jensenlem.5
 |-  ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) )
16 cnfld0
 |-  0 = ( 0g ` CCfld )
17 cnring
 |-  CCfld e. Ring
18 ringabl
 |-  ( CCfld e. Ring -> CCfld e. Abel )
19 17 18 mp1i
 |-  ( ph -> CCfld e. Abel )
20 10 unssad
 |-  ( ph -> B C_ A )
21 4 20 ssfid
 |-  ( ph -> B e. Fin )
22 resubdrg
 |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing )
23 22 simpli
 |-  RR e. ( SubRing ` CCfld )
24 subrgsubg
 |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) )
25 23 24 mp1i
 |-  ( ph -> RR e. ( SubGrp ` CCfld ) )
26 remulcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR )
27 26 adantl
 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR )
28 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
29 fss
 |-  ( ( T : A --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> T : A --> RR )
30 5 28 29 sylancl
 |-  ( ph -> T : A --> RR )
31 6 1 fssd
 |-  ( ph -> X : A --> RR )
32 inidm
 |-  ( A i^i A ) = A
33 27 30 31 4 4 32 off
 |-  ( ph -> ( T oF x. X ) : A --> RR )
34 33 20 fssresd
 |-  ( ph -> ( ( T oF x. X ) |` B ) : B --> RR )
35 c0ex
 |-  0 e. _V
36 35 a1i
 |-  ( ph -> 0 e. _V )
37 34 21 36 fdmfifsupp
 |-  ( ph -> ( ( T oF x. X ) |` B ) finSupp 0 )
38 16 19 21 25 34 37 gsumsubgcl
 |-  ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. RR )
39 38 recnd
 |-  ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) e. CC )
40 ax-resscn
 |-  RR C_ CC
41 28 40 sstri
 |-  ( 0 [,) +oo ) C_ CC
42 10 unssbd
 |-  ( ph -> { z } C_ A )
43 vex
 |-  z e. _V
44 43 snss
 |-  ( z e. A <-> { z } C_ A )
45 42 44 sylibr
 |-  ( ph -> z e. A )
46 5 45 ffvelrnd
 |-  ( ph -> ( T ` z ) e. ( 0 [,) +oo ) )
47 41 46 sselid
 |-  ( ph -> ( T ` z ) e. CC )
48 6 45 ffvelrnd
 |-  ( ph -> ( X ` z ) e. D )
49 1 48 sseldd
 |-  ( ph -> ( X ` z ) e. RR )
50 49 recnd
 |-  ( ph -> ( X ` z ) e. CC )
51 47 50 mulcld
 |-  ( ph -> ( ( T ` z ) x. ( X ` z ) ) e. CC )
52 1 2 3 4 5 6 7 8 9 10 11 12 jensenlem1
 |-  ( ph -> L = ( S + ( T ` z ) ) )
53 13 rpred
 |-  ( ph -> S e. RR )
54 elrege0
 |-  ( ( T ` z ) e. ( 0 [,) +oo ) <-> ( ( T ` z ) e. RR /\ 0 <_ ( T ` z ) ) )
55 54 simplbi
 |-  ( ( T ` z ) e. ( 0 [,) +oo ) -> ( T ` z ) e. RR )
56 46 55 syl
 |-  ( ph -> ( T ` z ) e. RR )
57 53 56 readdcld
 |-  ( ph -> ( S + ( T ` z ) ) e. RR )
58 52 57 eqeltrd
 |-  ( ph -> L e. RR )
59 58 recnd
 |-  ( ph -> L e. CC )
60 0red
 |-  ( ph -> 0 e. RR )
61 13 rpgt0d
 |-  ( ph -> 0 < S )
62 54 simprbi
 |-  ( ( T ` z ) e. ( 0 [,) +oo ) -> 0 <_ ( T ` z ) )
63 46 62 syl
 |-  ( ph -> 0 <_ ( T ` z ) )
64 53 56 addge01d
 |-  ( ph -> ( 0 <_ ( T ` z ) <-> S <_ ( S + ( T ` z ) ) ) )
65 63 64 mpbid
 |-  ( ph -> S <_ ( S + ( T ` z ) ) )
66 65 52 breqtrrd
 |-  ( ph -> S <_ L )
67 60 53 58 61 66 ltletrd
 |-  ( ph -> 0 < L )
68 67 gt0ne0d
 |-  ( ph -> L =/= 0 )
69 39 51 59 68 divdird
 |-  ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) )
70 cnfldbas
 |-  CC = ( Base ` CCfld )
71 cnfldadd
 |-  + = ( +g ` CCfld )
72 ringcmn
 |-  ( CCfld e. Ring -> CCfld e. CMnd )
73 17 72 mp1i
 |-  ( ph -> CCfld e. CMnd )
74 20 sselda
 |-  ( ( ph /\ x e. B ) -> x e. A )
75 5 ffvelrnda
 |-  ( ( ph /\ x e. A ) -> ( T ` x ) e. ( 0 [,) +oo ) )
76 74 75 syldan
 |-  ( ( ph /\ x e. B ) -> ( T ` x ) e. ( 0 [,) +oo ) )
77 41 76 sselid
 |-  ( ( ph /\ x e. B ) -> ( T ` x ) e. CC )
78 1 adantr
 |-  ( ( ph /\ x e. B ) -> D C_ RR )
79 6 ffvelrnda
 |-  ( ( ph /\ x e. A ) -> ( X ` x ) e. D )
80 74 79 syldan
 |-  ( ( ph /\ x e. B ) -> ( X ` x ) e. D )
81 78 80 sseldd
 |-  ( ( ph /\ x e. B ) -> ( X ` x ) e. RR )
82 81 recnd
 |-  ( ( ph /\ x e. B ) -> ( X ` x ) e. CC )
83 77 82 mulcld
 |-  ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( X ` x ) ) e. CC )
84 fveq2
 |-  ( x = z -> ( T ` x ) = ( T ` z ) )
85 fveq2
 |-  ( x = z -> ( X ` x ) = ( X ` z ) )
86 84 85 oveq12d
 |-  ( x = z -> ( ( T ` x ) x. ( X ` x ) ) = ( ( T ` z ) x. ( X ` z ) ) )
87 70 71 73 21 83 45 9 51 86 gsumunsn
 |-  ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) )
88 5 feqmptd
 |-  ( ph -> T = ( x e. A |-> ( T ` x ) ) )
89 6 feqmptd
 |-  ( ph -> X = ( x e. A |-> ( X ` x ) ) )
90 4 75 79 88 89 offval2
 |-  ( ph -> ( T oF x. X ) = ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) )
91 90 reseq1d
 |-  ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) )
92 10 resmptd
 |-  ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) )
93 91 92 eqtrd
 |-  ( ph -> ( ( T oF x. X ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) )
94 93 oveq2d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( X ` x ) ) ) ) )
95 90 reseq1d
 |-  ( ph -> ( ( T oF x. X ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) )
96 20 resmptd
 |-  ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( X ` x ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) )
97 95 96 eqtrd
 |-  ( ph -> ( ( T oF x. X ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) )
98 97 oveq2d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. X ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) )
99 98 oveq1d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( X ` x ) ) ) ) + ( ( T ` z ) x. ( X ` z ) ) ) )
100 87 94 99 3eqtr4d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) )
101 100 oveq1d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) + ( ( T ` z ) x. ( X ` z ) ) ) / L ) )
102 53 recnd
 |-  ( ph -> S e. CC )
103 13 rpne0d
 |-  ( ph -> S =/= 0 )
104 39 102 59 103 68 dmdcand
 |-  ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) )
105 59 102 59 68 divsubdird
 |-  ( ph -> ( ( L - S ) / L ) = ( ( L / L ) - ( S / L ) ) )
106 102 47 52 mvrladdd
 |-  ( ph -> ( L - S ) = ( T ` z ) )
107 106 oveq1d
 |-  ( ph -> ( ( L - S ) / L ) = ( ( T ` z ) / L ) )
108 59 68 dividd
 |-  ( ph -> ( L / L ) = 1 )
109 108 oveq1d
 |-  ( ph -> ( ( L / L ) - ( S / L ) ) = ( 1 - ( S / L ) ) )
110 105 107 109 3eqtr3rd
 |-  ( ph -> ( 1 - ( S / L ) ) = ( ( T ` z ) / L ) )
111 110 oveq1d
 |-  ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) )
112 47 50 59 68 div23d
 |-  ( ph -> ( ( ( T ` z ) x. ( X ` z ) ) / L ) = ( ( ( T ` z ) / L ) x. ( X ` z ) ) )
113 111 112 eqtr4d
 |-  ( ph -> ( ( 1 - ( S / L ) ) x. ( X ` z ) ) = ( ( ( T ` z ) x. ( X ` z ) ) / L ) )
114 104 113 oveq12d
 |-  ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) = ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( X ` z ) ) / L ) ) )
115 69 101 114 3eqtr4d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) )
116 53 58 68 redivcld
 |-  ( ph -> ( S / L ) e. RR )
117 13 rpge0d
 |-  ( ph -> 0 <_ S )
118 divge0
 |-  ( ( ( S e. RR /\ 0 <_ S ) /\ ( L e. RR /\ 0 < L ) ) -> 0 <_ ( S / L ) )
119 53 117 58 67 118 syl22anc
 |-  ( ph -> 0 <_ ( S / L ) )
120 59 mulid1d
 |-  ( ph -> ( L x. 1 ) = L )
121 66 120 breqtrrd
 |-  ( ph -> S <_ ( L x. 1 ) )
122 1red
 |-  ( ph -> 1 e. RR )
123 ledivmul
 |-  ( ( S e. RR /\ 1 e. RR /\ ( L e. RR /\ 0 < L ) ) -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) )
124 53 122 58 67 123 syl112anc
 |-  ( ph -> ( ( S / L ) <_ 1 <-> S <_ ( L x. 1 ) ) )
125 121 124 mpbird
 |-  ( ph -> ( S / L ) <_ 1 )
126 elicc01
 |-  ( ( S / L ) e. ( 0 [,] 1 ) <-> ( ( S / L ) e. RR /\ 0 <_ ( S / L ) /\ ( S / L ) <_ 1 ) )
127 116 119 125 126 syl3anbrc
 |-  ( ph -> ( S / L ) e. ( 0 [,] 1 ) )
128 14 48 127 3jca
 |-  ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) )
129 1 3 cvxcl
 |-  ( ( ph /\ ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) ) -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D )
130 128 129 mpdan
 |-  ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) e. D )
131 115 130 eqeltrd
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D )
132 2 130 ffvelrnd
 |-  ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) e. RR )
133 2 14 ffvelrnd
 |-  ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR )
134 116 133 remulcld
 |-  ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) e. RR )
135 2 48 ffvelrnd
 |-  ( ph -> ( F ` ( X ` z ) ) e. RR )
136 56 135 remulcld
 |-  ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. RR )
137 136 58 68 redivcld
 |-  ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) e. RR )
138 134 137 readdcld
 |-  ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) e. RR )
139 fco
 |-  ( ( F : D --> RR /\ X : A --> D ) -> ( F o. X ) : A --> RR )
140 2 6 139 syl2anc
 |-  ( ph -> ( F o. X ) : A --> RR )
141 27 30 140 4 4 32 off
 |-  ( ph -> ( T oF x. ( F o. X ) ) : A --> RR )
142 141 20 fssresd
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) : B --> RR )
143 142 21 36 fdmfifsupp
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) finSupp 0 )
144 16 19 21 25 142 143 gsumsubgcl
 |-  ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. RR )
145 144 53 103 redivcld
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR )
146 116 145 remulcld
 |-  ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) e. RR )
147 1re
 |-  1 e. RR
148 resubcl
 |-  ( ( 1 e. RR /\ ( S / L ) e. RR ) -> ( 1 - ( S / L ) ) e. RR )
149 147 116 148 sylancr
 |-  ( ph -> ( 1 - ( S / L ) ) e. RR )
150 149 135 remulcld
 |-  ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) e. RR )
151 146 150 readdcld
 |-  ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) e. RR )
152 oveq2
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. x ) = ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) )
153 152 fvoveq1d
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) )
154 fveq2
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( F ` x ) = ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) )
155 154 oveq2d
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( t x. ( F ` x ) ) = ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) )
156 155 oveq1d
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) )
157 153 156 breq12d
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) )
158 157 imbi2d
 |-  ( x = ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) -> ( ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) ) )
159 oveq2
 |-  ( y = ( X ` z ) -> ( ( 1 - t ) x. y ) = ( ( 1 - t ) x. ( X ` z ) ) )
160 159 oveq2d
 |-  ( y = ( X ` z ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) = ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) )
161 160 fveq2d
 |-  ( y = ( X ` z ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) = ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) )
162 fveq2
 |-  ( y = ( X ` z ) -> ( F ` y ) = ( F ` ( X ` z ) ) )
163 162 oveq2d
 |-  ( y = ( X ` z ) -> ( ( 1 - t ) x. ( F ` y ) ) = ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) )
164 163 oveq2d
 |-  ( y = ( X ` z ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) = ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) )
165 161 164 breq12d
 |-  ( y = ( X ` z ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) <-> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) )
166 165 imbi2d
 |-  ( y = ( X ` z ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) <-> ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) ) )
167 oveq1
 |-  ( t = ( S / L ) -> ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) = ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) )
168 oveq2
 |-  ( t = ( S / L ) -> ( 1 - t ) = ( 1 - ( S / L ) ) )
169 168 oveq1d
 |-  ( t = ( S / L ) -> ( ( 1 - t ) x. ( X ` z ) ) = ( ( 1 - ( S / L ) ) x. ( X ` z ) ) )
170 167 169 oveq12d
 |-  ( t = ( S / L ) -> ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) )
171 170 fveq2d
 |-  ( t = ( S / L ) -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) )
172 oveq1
 |-  ( t = ( S / L ) -> ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) = ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) )
173 168 oveq1d
 |-  ( t = ( S / L ) -> ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) )
174 172 173 oveq12d
 |-  ( t = ( S / L ) -> ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
175 171 174 breq12d
 |-  ( t = ( S / L ) -> ( ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) <-> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) )
176 175 imbi2d
 |-  ( t = ( S / L ) -> ( ( ph -> ( F ` ( ( t x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - t ) x. ( X ` z ) ) ) ) <_ ( ( t x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - t ) x. ( F ` ( X ` z ) ) ) ) ) <-> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) ) )
177 8 expcom
 |-  ( ( x e. D /\ y e. D /\ t e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) <_ ( ( t x. ( F ` x ) ) + ( ( 1 - t ) x. ( F ` y ) ) ) ) )
178 158 166 176 177 vtocl3ga
 |-  ( ( ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) e. D /\ ( X ` z ) e. D /\ ( S / L ) e. ( 0 [,] 1 ) ) -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) )
179 14 48 127 178 syl3anc
 |-  ( ph -> ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) ) )
180 179 pm2.43i
 |-  ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
181 110 oveq1d
 |-  ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) )
182 135 recnd
 |-  ( ph -> ( F ` ( X ` z ) ) e. CC )
183 47 182 59 68 div23d
 |-  ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( ( T ` z ) / L ) x. ( F ` ( X ` z ) ) ) )
184 181 183 eqtr4d
 |-  ( ph -> ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) = ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) )
185 184 oveq2d
 |-  ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) )
186 180 185 breqtrd
 |-  ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) )
187 183 181 eqtr4d
 |-  ( ph -> ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) = ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) )
188 187 oveq2d
 |-  ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) = ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
189 53 58 61 67 divgt0d
 |-  ( ph -> 0 < ( S / L ) )
190 lemul2
 |-  ( ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) e. RR /\ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) e. RR /\ ( ( S / L ) e. RR /\ 0 < ( S / L ) ) ) -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) )
191 133 145 116 189 190 syl112anc
 |-  ( ph -> ( ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) <-> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) ) )
192 15 191 mpbid
 |-  ( ph -> ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) <_ ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) )
193 134 146 150 192 leadd1dd
 |-  ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
194 188 193 eqbrtrd
 |-  ( ph -> ( ( ( S / L ) x. ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
195 132 138 151 186 194 letrd
 |-  ( ph -> ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) <_ ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
196 115 fveq2d
 |-  ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) = ( F ` ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. X ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( X ` z ) ) ) ) )
197 144 recnd
 |-  ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) e. CC )
198 136 recnd
 |-  ( ph -> ( ( T ` z ) x. ( F ` ( X ` z ) ) ) e. CC )
199 197 198 59 68 divdird
 |-  ( ph -> ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) )
200 28 75 sselid
 |-  ( ( ph /\ x e. A ) -> ( T ` x ) e. RR )
201 2 ffvelrnda
 |-  ( ( ph /\ ( X ` x ) e. D ) -> ( F ` ( X ` x ) ) e. RR )
202 79 201 syldan
 |-  ( ( ph /\ x e. A ) -> ( F ` ( X ` x ) ) e. RR )
203 200 202 remulcld
 |-  ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. RR )
204 203 recnd
 |-  ( ( ph /\ x e. A ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC )
205 74 204 syldan
 |-  ( ( ph /\ x e. B ) -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) e. CC )
206 85 fveq2d
 |-  ( x = z -> ( F ` ( X ` x ) ) = ( F ` ( X ` z ) ) )
207 84 206 oveq12d
 |-  ( x = z -> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) = ( ( T ` z ) x. ( F ` ( X ` z ) ) ) )
208 70 71 73 21 205 45 9 198 207 gsumunsn
 |-  ( ph -> ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) )
209 2 feqmptd
 |-  ( ph -> F = ( y e. D |-> ( F ` y ) ) )
210 fveq2
 |-  ( y = ( X ` x ) -> ( F ` y ) = ( F ` ( X ` x ) ) )
211 79 89 209 210 fmptco
 |-  ( ph -> ( F o. X ) = ( x e. A |-> ( F ` ( X ` x ) ) ) )
212 4 75 202 88 211 offval2
 |-  ( ph -> ( T oF x. ( F o. X ) ) = ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) )
213 212 reseq1d
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) )
214 10 resmptd
 |-  ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) )
215 213 214 eqtrd
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) = ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) )
216 215 oveq2d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( CCfld gsum ( x e. ( B u. { z } ) |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) )
217 212 reseq1d
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) )
218 20 resmptd
 |-  ( ph -> ( ( x e. A |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) )
219 217 218 eqtrd
 |-  ( ph -> ( ( T oF x. ( F o. X ) ) |` B ) = ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) )
220 219 oveq2d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) = ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) )
221 220 oveq1d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) = ( ( CCfld gsum ( x e. B |-> ( ( T ` x ) x. ( F ` ( X ` x ) ) ) ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) )
222 208 216 221 3eqtr4d
 |-  ( ph -> ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) )
223 222 oveq1d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) + ( ( T ` z ) x. ( F ` ( X ` z ) ) ) ) / L ) )
224 197 102 59 103 68 dmdcand
 |-  ( ph -> ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) = ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) )
225 224 184 oveq12d
 |-  ( ph -> ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) = ( ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / L ) + ( ( ( T ` z ) x. ( F ` ( X ` z ) ) ) / L ) ) )
226 199 223 225 3eqtr4d
 |-  ( ph -> ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) = ( ( ( S / L ) x. ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` B ) ) / S ) ) + ( ( 1 - ( S / L ) ) x. ( F ` ( X ` z ) ) ) ) )
227 195 196 226 3brtr4d
 |-  ( ph -> ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) )
228 131 227 jca
 |-  ( ph -> ( ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) e. D /\ ( F ` ( ( CCfld gsum ( ( T oF x. X ) |` ( B u. { z } ) ) ) / L ) ) <_ ( ( CCfld gsum ( ( T oF x. ( F o. X ) ) |` ( B u. { z } ) ) ) / L ) ) )