Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
2 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
3 |
1 2
|
syl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) e. ZZ ) |
4 |
|
0z |
|- 0 e. ZZ |
5 |
|
congid |
|- ( ( ( A - 1 ) e. ZZ /\ 0 e. ZZ ) -> ( A - 1 ) || ( 0 - 0 ) ) |
6 |
3 4 5
|
sylancl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( 0 - 0 ) ) |
7 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
8 |
7
|
oveq1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY 0 ) - 0 ) = ( 0 - 0 ) ) |
9 |
6 8
|
breqtrrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY 0 ) - 0 ) ) |
10 |
|
1z |
|- 1 e. ZZ |
11 |
|
congid |
|- ( ( ( A - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( A - 1 ) || ( 1 - 1 ) ) |
12 |
3 10 11
|
sylancl |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( 1 - 1 ) ) |
13 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
14 |
13
|
oveq1d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY 1 ) - 1 ) = ( 1 - 1 ) ) |
15 |
12 14
|
breqtrrd |
|- ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY 1 ) - 1 ) ) |
16 |
|
pm3.43 |
|- ( ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) /\ ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) ) |
17 |
1
|
adantl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> A e. ZZ ) |
18 |
17 2
|
syl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A - 1 ) e. ZZ ) |
19 |
|
eluzel2 |
|- ( A e. ( ZZ>= ` 2 ) -> 2 e. ZZ ) |
20 |
19
|
adantl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> 2 e. ZZ ) |
21 |
|
simpr |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> A e. ( ZZ>= ` 2 ) ) |
22 |
|
nnz |
|- ( b e. NN -> b e. ZZ ) |
23 |
22
|
adantr |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> b e. ZZ ) |
24 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
25 |
24
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
26 |
21 23 25
|
syl2anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY b ) e. ZZ ) |
27 |
26 17
|
zmulcld |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY b ) x. A ) e. ZZ ) |
28 |
20 27
|
zmulcld |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ ) |
29 |
|
zmulcl |
|- ( ( b e. ZZ /\ 1 e. ZZ ) -> ( b x. 1 ) e. ZZ ) |
30 |
23 10 29
|
sylancl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( b x. 1 ) e. ZZ ) |
31 |
20 30
|
zmulcld |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( b x. 1 ) ) e. ZZ ) |
32 |
18 28 31
|
3jca |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A - 1 ) e. ZZ /\ ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ /\ ( 2 x. ( b x. 1 ) ) e. ZZ ) ) |
33 |
32
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( A - 1 ) e. ZZ /\ ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ /\ ( 2 x. ( b x. 1 ) ) e. ZZ ) ) |
34 |
|
peano2zm |
|- ( b e. ZZ -> ( b - 1 ) e. ZZ ) |
35 |
23 34
|
syl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( b - 1 ) e. ZZ ) |
36 |
24
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b - 1 ) e. ZZ ) -> ( A rmY ( b - 1 ) ) e. ZZ ) |
37 |
21 35 36
|
syl2anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( b - 1 ) ) e. ZZ ) |
38 |
37 35
|
jca |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b - 1 ) ) e. ZZ /\ ( b - 1 ) e. ZZ ) ) |
39 |
38
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( A rmY ( b - 1 ) ) e. ZZ /\ ( b - 1 ) e. ZZ ) ) |
40 |
18 20 20
|
3jca |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A - 1 ) e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) ) |
41 |
40
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( A - 1 ) e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) ) |
42 |
27 30
|
jca |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( A rmY b ) x. A ) e. ZZ /\ ( b x. 1 ) e. ZZ ) ) |
43 |
42
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( ( A rmY b ) x. A ) e. ZZ /\ ( b x. 1 ) e. ZZ ) ) |
44 |
|
congid |
|- ( ( ( A - 1 ) e. ZZ /\ 2 e. ZZ ) -> ( A - 1 ) || ( 2 - 2 ) ) |
45 |
18 20 44
|
syl2anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A - 1 ) || ( 2 - 2 ) ) |
46 |
45
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( 2 - 2 ) ) |
47 |
18 26 23
|
3jca |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A - 1 ) e. ZZ /\ ( A rmY b ) e. ZZ /\ b e. ZZ ) ) |
48 |
47
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( A - 1 ) e. ZZ /\ ( A rmY b ) e. ZZ /\ b e. ZZ ) ) |
49 |
17 10
|
jctir |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A e. ZZ /\ 1 e. ZZ ) ) |
50 |
49
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A e. ZZ /\ 1 e. ZZ ) ) |
51 |
|
simp3r |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( A rmY b ) - b ) ) |
52 |
|
iddvds |
|- ( ( A - 1 ) e. ZZ -> ( A - 1 ) || ( A - 1 ) ) |
53 |
18 52
|
syl |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A - 1 ) || ( A - 1 ) ) |
54 |
53
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( A - 1 ) ) |
55 |
|
congmul |
|- ( ( ( ( A - 1 ) e. ZZ /\ ( A rmY b ) e. ZZ /\ b e. ZZ ) /\ ( A e. ZZ /\ 1 e. ZZ ) /\ ( ( A - 1 ) || ( ( A rmY b ) - b ) /\ ( A - 1 ) || ( A - 1 ) ) ) -> ( A - 1 ) || ( ( ( A rmY b ) x. A ) - ( b x. 1 ) ) ) |
56 |
48 50 51 54 55
|
syl112anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( ( A rmY b ) x. A ) - ( b x. 1 ) ) ) |
57 |
|
congmul |
|- ( ( ( ( A - 1 ) e. ZZ /\ 2 e. ZZ /\ 2 e. ZZ ) /\ ( ( ( A rmY b ) x. A ) e. ZZ /\ ( b x. 1 ) e. ZZ ) /\ ( ( A - 1 ) || ( 2 - 2 ) /\ ( A - 1 ) || ( ( ( A rmY b ) x. A ) - ( b x. 1 ) ) ) ) -> ( A - 1 ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( b x. 1 ) ) ) ) |
58 |
41 43 46 56 57
|
syl112anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( b x. 1 ) ) ) ) |
59 |
|
simp3l |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) |
60 |
|
congsub |
|- ( ( ( ( A - 1 ) e. ZZ /\ ( 2 x. ( ( A rmY b ) x. A ) ) e. ZZ /\ ( 2 x. ( b x. 1 ) ) e. ZZ ) /\ ( ( A rmY ( b - 1 ) ) e. ZZ /\ ( b - 1 ) e. ZZ ) /\ ( ( A - 1 ) || ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( 2 x. ( b x. 1 ) ) ) /\ ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) ) -> ( A - 1 ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) ) |
61 |
33 39 58 59 60
|
syl112anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) ) |
62 |
|
rmyluc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) ) |
63 |
21 23 62
|
syl2anc |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( b + 1 ) ) = ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) ) |
64 |
|
nncn |
|- ( b e. NN -> b e. CC ) |
65 |
64
|
mulid1d |
|- ( b e. NN -> ( b x. 1 ) = b ) |
66 |
65
|
oveq2d |
|- ( b e. NN -> ( 2 x. ( b x. 1 ) ) = ( 2 x. b ) ) |
67 |
64
|
2timesd |
|- ( b e. NN -> ( 2 x. b ) = ( b + b ) ) |
68 |
66 67
|
eqtrd |
|- ( b e. NN -> ( 2 x. ( b x. 1 ) ) = ( b + b ) ) |
69 |
68
|
oveq1d |
|- ( b e. NN -> ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) = ( ( b + b ) - ( b - 1 ) ) ) |
70 |
|
1cnd |
|- ( b e. NN -> 1 e. CC ) |
71 |
64 64 70
|
pnncand |
|- ( b e. NN -> ( ( b + b ) - ( b - 1 ) ) = ( b + 1 ) ) |
72 |
69 71
|
eqtr2d |
|- ( b e. NN -> ( b + 1 ) = ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) |
73 |
72
|
adantr |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( b + 1 ) = ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) |
74 |
63 73
|
oveq12d |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) = ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) ) |
75 |
74
|
3adant3 |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) = ( ( ( 2 x. ( ( A rmY b ) x. A ) ) - ( A rmY ( b - 1 ) ) ) - ( ( 2 x. ( b x. 1 ) ) - ( b - 1 ) ) ) ) |
76 |
61 75
|
breqtrrd |
|- ( ( b e. NN /\ A e. ( ZZ>= ` 2 ) /\ ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) |
77 |
76
|
3exp |
|- ( b e. NN -> ( A e. ( ZZ>= ` 2 ) -> ( ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) -> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) ) ) |
78 |
77
|
a2d |
|- ( b e. NN -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) /\ ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) ) ) |
79 |
16 78
|
syl5 |
|- ( b e. NN -> ( ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) /\ ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY b ) - b ) ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) ) ) |
80 |
|
oveq2 |
|- ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) ) |
81 |
|
id |
|- ( a = 0 -> a = 0 ) |
82 |
80 81
|
oveq12d |
|- ( a = 0 -> ( ( A rmY a ) - a ) = ( ( A rmY 0 ) - 0 ) ) |
83 |
82
|
breq2d |
|- ( a = 0 -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY 0 ) - 0 ) ) ) |
84 |
83
|
imbi2d |
|- ( a = 0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY 0 ) - 0 ) ) ) ) |
85 |
|
oveq2 |
|- ( a = 1 -> ( A rmY a ) = ( A rmY 1 ) ) |
86 |
|
id |
|- ( a = 1 -> a = 1 ) |
87 |
85 86
|
oveq12d |
|- ( a = 1 -> ( ( A rmY a ) - a ) = ( ( A rmY 1 ) - 1 ) ) |
88 |
87
|
breq2d |
|- ( a = 1 -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY 1 ) - 1 ) ) ) |
89 |
88
|
imbi2d |
|- ( a = 1 -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY 1 ) - 1 ) ) ) ) |
90 |
|
oveq2 |
|- ( a = ( b - 1 ) -> ( A rmY a ) = ( A rmY ( b - 1 ) ) ) |
91 |
|
id |
|- ( a = ( b - 1 ) -> a = ( b - 1 ) ) |
92 |
90 91
|
oveq12d |
|- ( a = ( b - 1 ) -> ( ( A rmY a ) - a ) = ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) |
93 |
92
|
breq2d |
|- ( a = ( b - 1 ) -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) ) |
94 |
93
|
imbi2d |
|- ( a = ( b - 1 ) -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b - 1 ) ) - ( b - 1 ) ) ) ) ) |
95 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
96 |
|
id |
|- ( a = b -> a = b ) |
97 |
95 96
|
oveq12d |
|- ( a = b -> ( ( A rmY a ) - a ) = ( ( A rmY b ) - b ) ) |
98 |
97
|
breq2d |
|- ( a = b -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY b ) - b ) ) ) |
99 |
98
|
imbi2d |
|- ( a = b -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY b ) - b ) ) ) ) |
100 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) ) |
101 |
|
id |
|- ( a = ( b + 1 ) -> a = ( b + 1 ) ) |
102 |
100 101
|
oveq12d |
|- ( a = ( b + 1 ) -> ( ( A rmY a ) - a ) = ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) |
103 |
102
|
breq2d |
|- ( a = ( b + 1 ) -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) ) |
104 |
103
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY ( b + 1 ) ) - ( b + 1 ) ) ) ) ) |
105 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
106 |
|
id |
|- ( a = N -> a = N ) |
107 |
105 106
|
oveq12d |
|- ( a = N -> ( ( A rmY a ) - a ) = ( ( A rmY N ) - N ) ) |
108 |
107
|
breq2d |
|- ( a = N -> ( ( A - 1 ) || ( ( A rmY a ) - a ) <-> ( A - 1 ) || ( ( A rmY N ) - N ) ) ) |
109 |
108
|
imbi2d |
|- ( a = N -> ( ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY a ) - a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY N ) - N ) ) ) ) |
110 |
9 15 79 84 89 94 99 104 109
|
2nn0ind |
|- ( N e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( A - 1 ) || ( ( A rmY N ) - N ) ) ) |
111 |
110
|
impcom |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A - 1 ) || ( ( A rmY N ) - N ) ) |