Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( a = 0 -> ( ( ( 2 x. A ) - 1 ) ^ a ) = ( ( ( 2 x. A ) - 1 ) ^ 0 ) ) |
2 |
|
oveq1 |
|- ( a = 0 -> ( a + 1 ) = ( 0 + 1 ) ) |
3 |
2
|
oveq2d |
|- ( a = 0 -> ( A rmY ( a + 1 ) ) = ( A rmY ( 0 + 1 ) ) ) |
4 |
1 3
|
breq12d |
|- ( a = 0 -> ( ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) <-> ( ( ( 2 x. A ) - 1 ) ^ 0 ) <_ ( A rmY ( 0 + 1 ) ) ) ) |
5 |
4
|
imbi2d |
|- ( a = 0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ 0 ) <_ ( A rmY ( 0 + 1 ) ) ) ) ) |
6 |
|
oveq2 |
|- ( a = b -> ( ( ( 2 x. A ) - 1 ) ^ a ) = ( ( ( 2 x. A ) - 1 ) ^ b ) ) |
7 |
|
oveq1 |
|- ( a = b -> ( a + 1 ) = ( b + 1 ) ) |
8 |
7
|
oveq2d |
|- ( a = b -> ( A rmY ( a + 1 ) ) = ( A rmY ( b + 1 ) ) ) |
9 |
6 8
|
breq12d |
|- ( a = b -> ( ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) <-> ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) ) |
10 |
9
|
imbi2d |
|- ( a = b -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) ) ) |
11 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( ( ( 2 x. A ) - 1 ) ^ a ) = ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) ) |
12 |
|
oveq1 |
|- ( a = ( b + 1 ) -> ( a + 1 ) = ( ( b + 1 ) + 1 ) ) |
13 |
12
|
oveq2d |
|- ( a = ( b + 1 ) -> ( A rmY ( a + 1 ) ) = ( A rmY ( ( b + 1 ) + 1 ) ) ) |
14 |
11 13
|
breq12d |
|- ( a = ( b + 1 ) -> ( ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) <-> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) ) ) |
16 |
|
oveq2 |
|- ( a = N -> ( ( ( 2 x. A ) - 1 ) ^ a ) = ( ( ( 2 x. A ) - 1 ) ^ N ) ) |
17 |
|
oveq1 |
|- ( a = N -> ( a + 1 ) = ( N + 1 ) ) |
18 |
17
|
oveq2d |
|- ( a = N -> ( A rmY ( a + 1 ) ) = ( A rmY ( N + 1 ) ) ) |
19 |
16 18
|
breq12d |
|- ( a = N -> ( ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) <-> ( ( ( 2 x. A ) - 1 ) ^ N ) <_ ( A rmY ( N + 1 ) ) ) ) |
20 |
19
|
imbi2d |
|- ( a = N -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ a ) <_ ( A rmY ( a + 1 ) ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ N ) <_ ( A rmY ( N + 1 ) ) ) ) ) |
21 |
|
1le1 |
|- 1 <_ 1 |
22 |
21
|
a1i |
|- ( A e. ( ZZ>= ` 2 ) -> 1 <_ 1 ) |
23 |
|
2cn |
|- 2 e. CC |
24 |
|
eluzelcn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. CC ) |
25 |
|
mulcl |
|- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
26 |
23 24 25
|
sylancr |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. CC ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
subcl |
|- ( ( ( 2 x. A ) e. CC /\ 1 e. CC ) -> ( ( 2 x. A ) - 1 ) e. CC ) |
29 |
26 27 28
|
sylancl |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( 2 x. A ) - 1 ) e. CC ) |
30 |
29
|
exp0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ 0 ) = 1 ) |
31 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
32 |
31
|
oveq2i |
|- ( A rmY ( 0 + 1 ) ) = ( A rmY 1 ) |
33 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
34 |
32 33
|
syl5eq |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( 0 + 1 ) ) = 1 ) |
35 |
22 30 34
|
3brtr4d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ 0 ) <_ ( A rmY ( 0 + 1 ) ) ) |
36 |
|
2re |
|- 2 e. RR |
37 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
38 |
37
|
adantl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
39 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
40 |
36 38 39
|
sylancr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. A ) e. RR ) |
41 |
|
1re |
|- 1 e. RR |
42 |
|
resubcl |
|- ( ( ( 2 x. A ) e. RR /\ 1 e. RR ) -> ( ( 2 x. A ) - 1 ) e. RR ) |
43 |
40 41 42
|
sylancl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) - 1 ) e. RR ) |
44 |
|
peano2nn0 |
|- ( b e. NN0 -> ( b + 1 ) e. NN0 ) |
45 |
44
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( b + 1 ) e. NN0 ) |
46 |
43 45
|
reexpcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) e. RR ) |
47 |
46
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) e. RR ) |
48 |
|
simpr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> A e. ( ZZ>= ` 2 ) ) |
49 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
50 |
49
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. ZZ ) |
51 |
50
|
peano2zd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( b + 1 ) e. ZZ ) |
52 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
53 |
52
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( b + 1 ) ) e. ZZ ) |
54 |
53
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( b + 1 ) ) e. RR ) |
55 |
48 51 54
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( b + 1 ) ) e. RR ) |
56 |
55 43
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) e. RR ) |
57 |
56
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) e. RR ) |
58 |
51
|
peano2zd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( b + 1 ) + 1 ) e. ZZ ) |
59 |
52
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( b + 1 ) + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. ZZ ) |
60 |
59
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( b + 1 ) + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. RR ) |
61 |
48 58 60
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. RR ) |
62 |
61
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. RR ) |
63 |
29
|
3ad2ant2 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( 2 x. A ) - 1 ) e. CC ) |
64 |
|
simp1 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> b e. NN0 ) |
65 |
63 64
|
expp1d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) = ( ( ( ( 2 x. A ) - 1 ) ^ b ) x. ( ( 2 x. A ) - 1 ) ) ) |
66 |
|
simpl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. NN0 ) |
67 |
43 66
|
reexpcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) - 1 ) ^ b ) e. RR ) |
68 |
|
2nn |
|- 2 e. NN |
69 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
70 |
69
|
adantl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> A e. NN ) |
71 |
|
nnmulcl |
|- ( ( 2 e. NN /\ A e. NN ) -> ( 2 x. A ) e. NN ) |
72 |
68 70 71
|
sylancr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. A ) e. NN ) |
73 |
|
nnm1nn0 |
|- ( ( 2 x. A ) e. NN -> ( ( 2 x. A ) - 1 ) e. NN0 ) |
74 |
|
nn0ge0 |
|- ( ( ( 2 x. A ) - 1 ) e. NN0 -> 0 <_ ( ( 2 x. A ) - 1 ) ) |
75 |
72 73 74
|
3syl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> 0 <_ ( ( 2 x. A ) - 1 ) ) |
76 |
43 75
|
jca |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) - 1 ) e. RR /\ 0 <_ ( ( 2 x. A ) - 1 ) ) ) |
77 |
67 55 76
|
3jca |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( ( 2 x. A ) - 1 ) ^ b ) e. RR /\ ( A rmY ( b + 1 ) ) e. RR /\ ( ( ( 2 x. A ) - 1 ) e. RR /\ 0 <_ ( ( 2 x. A ) - 1 ) ) ) ) |
78 |
|
lemul1a |
|- ( ( ( ( ( ( 2 x. A ) - 1 ) ^ b ) e. RR /\ ( A rmY ( b + 1 ) ) e. RR /\ ( ( ( 2 x. A ) - 1 ) e. RR /\ 0 <_ ( ( 2 x. A ) - 1 ) ) ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( ( 2 x. A ) - 1 ) ^ b ) x. ( ( 2 x. A ) - 1 ) ) <_ ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) ) |
79 |
77 78
|
stoic3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( ( 2 x. A ) - 1 ) ^ b ) x. ( ( 2 x. A ) - 1 ) ) <_ ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) ) |
80 |
65 79
|
eqbrtrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) ) |
81 |
|
nn0cn |
|- ( b e. NN0 -> b e. CC ) |
82 |
81
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. CC ) |
83 |
|
pncan |
|- ( ( b e. CC /\ 1 e. CC ) -> ( ( b + 1 ) - 1 ) = b ) |
84 |
82 27 83
|
sylancl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( b + 1 ) - 1 ) = b ) |
85 |
84
|
oveq2d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) - 1 ) ) = ( A rmY b ) ) |
86 |
52
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
87 |
86
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. RR ) |
88 |
48 50 87
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY b ) e. RR ) |
89 |
85 88
|
eqeltrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) - 1 ) ) e. RR ) |
90 |
|
remulcl |
|- ( ( ( A rmY ( b + 1 ) ) e. RR /\ 1 e. RR ) -> ( ( A rmY ( b + 1 ) ) x. 1 ) e. RR ) |
91 |
55 41 90
|
sylancl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. 1 ) e. RR ) |
92 |
40 55
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) e. RR ) |
93 |
|
nn0re |
|- ( b e. NN0 -> b e. RR ) |
94 |
93
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. RR ) |
95 |
94
|
lep1d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b <_ ( b + 1 ) ) |
96 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ /\ ( b + 1 ) e. ZZ ) -> ( b <_ ( b + 1 ) <-> ( A rmY b ) <_ ( A rmY ( b + 1 ) ) ) ) |
97 |
48 50 51 96
|
syl3anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( b <_ ( b + 1 ) <-> ( A rmY b ) <_ ( A rmY ( b + 1 ) ) ) ) |
98 |
95 97
|
mpbid |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY b ) <_ ( A rmY ( b + 1 ) ) ) |
99 |
55
|
recnd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( b + 1 ) ) e. CC ) |
100 |
99
|
mulid1d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. 1 ) = ( A rmY ( b + 1 ) ) ) |
101 |
98 85 100
|
3brtr4d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) - 1 ) ) <_ ( ( A rmY ( b + 1 ) ) x. 1 ) ) |
102 |
89 91 92 101
|
lesub2dd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( ( A rmY ( b + 1 ) ) x. 1 ) ) <_ ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) ) |
103 |
40
|
recnd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. A ) e. CC ) |
104 |
27
|
a1i |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> 1 e. CC ) |
105 |
99 103 104
|
subdid |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) = ( ( ( A rmY ( b + 1 ) ) x. ( 2 x. A ) ) - ( ( A rmY ( b + 1 ) ) x. 1 ) ) ) |
106 |
99 103
|
mulcomd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. ( 2 x. A ) ) = ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) ) |
107 |
106
|
oveq1d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( A rmY ( b + 1 ) ) x. ( 2 x. A ) ) - ( ( A rmY ( b + 1 ) ) x. 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( ( A rmY ( b + 1 ) ) x. 1 ) ) ) |
108 |
105 107
|
eqtrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( ( A rmY ( b + 1 ) ) x. 1 ) ) ) |
109 |
|
rmyluc2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) ) |
110 |
48 51 109
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) ) |
111 |
102 108 110
|
3brtr4d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) |
112 |
111
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( A rmY ( b + 1 ) ) x. ( ( 2 x. A ) - 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) |
113 |
47 57 62 80 112
|
letrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) |
114 |
113
|
3exp |
|- ( b e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) ) ) |
115 |
114
|
a2d |
|- ( b e. NN0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ b ) <_ ( A rmY ( b + 1 ) ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ ( b + 1 ) ) <_ ( A rmY ( ( b + 1 ) + 1 ) ) ) ) ) |
116 |
5 10 15 20 35 115
|
nn0ind |
|- ( N e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. A ) - 1 ) ^ N ) <_ ( A rmY ( N + 1 ) ) ) ) |
117 |
116
|
impcom |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( ( ( 2 x. A ) - 1 ) ^ N ) <_ ( A rmY ( N + 1 ) ) ) |