| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( a = 0 -> ( a + 1 ) = ( 0 + 1 ) ) |
| 2 |
1
|
oveq2d |
|- ( a = 0 -> ( A rmY ( a + 1 ) ) = ( A rmY ( 0 + 1 ) ) ) |
| 3 |
|
oveq2 |
|- ( a = 0 -> ( ( 2 x. A ) ^ a ) = ( ( 2 x. A ) ^ 0 ) ) |
| 4 |
2 3
|
breq12d |
|- ( a = 0 -> ( ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) <-> ( A rmY ( 0 + 1 ) ) <_ ( ( 2 x. A ) ^ 0 ) ) ) |
| 5 |
4
|
imbi2d |
|- ( a = 0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( 0 + 1 ) ) <_ ( ( 2 x. A ) ^ 0 ) ) ) ) |
| 6 |
|
oveq1 |
|- ( a = b -> ( a + 1 ) = ( b + 1 ) ) |
| 7 |
6
|
oveq2d |
|- ( a = b -> ( A rmY ( a + 1 ) ) = ( A rmY ( b + 1 ) ) ) |
| 8 |
|
oveq2 |
|- ( a = b -> ( ( 2 x. A ) ^ a ) = ( ( 2 x. A ) ^ b ) ) |
| 9 |
7 8
|
breq12d |
|- ( a = b -> ( ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) <-> ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) ) |
| 10 |
9
|
imbi2d |
|- ( a = b -> ( ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) ) ) |
| 11 |
|
oveq1 |
|- ( a = ( b + 1 ) -> ( a + 1 ) = ( ( b + 1 ) + 1 ) ) |
| 12 |
11
|
oveq2d |
|- ( a = ( b + 1 ) -> ( A rmY ( a + 1 ) ) = ( A rmY ( ( b + 1 ) + 1 ) ) ) |
| 13 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( ( 2 x. A ) ^ a ) = ( ( 2 x. A ) ^ ( b + 1 ) ) ) |
| 14 |
12 13
|
breq12d |
|- ( a = ( b + 1 ) -> ( ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) <-> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) ) |
| 16 |
|
oveq1 |
|- ( a = N -> ( a + 1 ) = ( N + 1 ) ) |
| 17 |
16
|
oveq2d |
|- ( a = N -> ( A rmY ( a + 1 ) ) = ( A rmY ( N + 1 ) ) ) |
| 18 |
|
oveq2 |
|- ( a = N -> ( ( 2 x. A ) ^ a ) = ( ( 2 x. A ) ^ N ) ) |
| 19 |
17 18
|
breq12d |
|- ( a = N -> ( ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) <-> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) ) |
| 20 |
19
|
imbi2d |
|- ( a = N -> ( ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( a + 1 ) ) <_ ( ( 2 x. A ) ^ a ) ) <-> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) ) ) |
| 21 |
|
1le1 |
|- 1 <_ 1 |
| 22 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 23 |
22
|
oveq2i |
|- ( A rmY ( 0 + 1 ) ) = ( A rmY 1 ) |
| 24 |
|
rmy1 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 1 ) = 1 ) |
| 25 |
23 24
|
eqtrid |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( 0 + 1 ) ) = 1 ) |
| 26 |
|
2re |
|- 2 e. RR |
| 27 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
| 28 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
| 29 |
26 27 28
|
sylancr |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. RR ) |
| 30 |
29
|
recnd |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. CC ) |
| 31 |
30
|
exp0d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( 2 x. A ) ^ 0 ) = 1 ) |
| 32 |
25 31
|
breq12d |
|- ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY ( 0 + 1 ) ) <_ ( ( 2 x. A ) ^ 0 ) <-> 1 <_ 1 ) ) |
| 33 |
21 32
|
mpbiri |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( 0 + 1 ) ) <_ ( ( 2 x. A ) ^ 0 ) ) |
| 34 |
|
simpr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> A e. ( ZZ>= ` 2 ) ) |
| 35 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
| 36 |
35
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. ZZ ) |
| 37 |
36
|
peano2zd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( b + 1 ) e. ZZ ) |
| 38 |
|
rmyluc2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) ) |
| 39 |
34 37 38
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) = ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) ) |
| 40 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) |
| 41 |
40
|
simprd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( A rmY b ) ) |
| 42 |
41
|
ancoms |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> 0 <_ ( A rmY b ) ) |
| 43 |
|
nn0re |
|- ( b e. NN0 -> b e. RR ) |
| 44 |
43
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. RR ) |
| 45 |
44
|
recnd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. CC ) |
| 46 |
|
ax-1cn |
|- 1 e. CC |
| 47 |
|
pncan |
|- ( ( b e. CC /\ 1 e. CC ) -> ( ( b + 1 ) - 1 ) = b ) |
| 48 |
45 46 47
|
sylancl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( b + 1 ) - 1 ) = b ) |
| 49 |
48
|
oveq2d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) - 1 ) ) = ( A rmY b ) ) |
| 50 |
42 49
|
breqtrrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> 0 <_ ( A rmY ( ( b + 1 ) - 1 ) ) ) |
| 51 |
27
|
adantl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
| 52 |
26 51 28
|
sylancr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. A ) e. RR ) |
| 53 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 54 |
53
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( b + 1 ) ) e. ZZ ) |
| 55 |
54
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmY ( b + 1 ) ) e. RR ) |
| 56 |
34 37 55
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( b + 1 ) ) e. RR ) |
| 57 |
52 56
|
remulcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) e. RR ) |
| 58 |
53
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
| 59 |
58
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. RR ) |
| 60 |
34 36 59
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY b ) e. RR ) |
| 61 |
49 60
|
eqeltrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) - 1 ) ) e. RR ) |
| 62 |
57 61
|
subge02d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 0 <_ ( A rmY ( ( b + 1 ) - 1 ) ) <-> ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) ) ) |
| 63 |
50 62
|
mpbid |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) - ( A rmY ( ( b + 1 ) - 1 ) ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) ) |
| 64 |
39 63
|
eqbrtrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) ) |
| 65 |
64
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) ) |
| 66 |
|
simpl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> b e. NN0 ) |
| 67 |
52 66
|
reexpcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) ^ b ) e. RR ) |
| 68 |
|
2nn |
|- 2 e. NN |
| 69 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
| 70 |
|
nnmulcl |
|- ( ( 2 e. NN /\ A e. NN ) -> ( 2 x. A ) e. NN ) |
| 71 |
68 69 70
|
sylancr |
|- ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. NN ) |
| 72 |
71
|
nngt0d |
|- ( A e. ( ZZ>= ` 2 ) -> 0 < ( 2 x. A ) ) |
| 73 |
72
|
adantl |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> 0 < ( 2 x. A ) ) |
| 74 |
|
lemul2 |
|- ( ( ( A rmY ( b + 1 ) ) e. RR /\ ( ( 2 x. A ) ^ b ) e. RR /\ ( ( 2 x. A ) e. RR /\ 0 < ( 2 x. A ) ) ) -> ( ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) <-> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) ) |
| 75 |
56 67 52 73 74
|
syl112anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) <-> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) ) |
| 76 |
75
|
biimp3a |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) |
| 77 |
52
|
recnd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( 2 x. A ) e. CC ) |
| 78 |
77 66
|
expp1d |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) ^ ( b + 1 ) ) = ( ( ( 2 x. A ) ^ b ) x. ( 2 x. A ) ) ) |
| 79 |
67
|
recnd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) ^ b ) e. CC ) |
| 80 |
79 77
|
mulcomd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. A ) ^ b ) x. ( 2 x. A ) ) = ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) |
| 81 |
78 80
|
eqtrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) ^ ( b + 1 ) ) = ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) |
| 82 |
81
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( ( 2 x. A ) ^ ( b + 1 ) ) = ( ( 2 x. A ) x. ( ( 2 x. A ) ^ b ) ) ) |
| 83 |
76 82
|
breqtrrd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) |
| 84 |
37
|
peano2zd |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( b + 1 ) + 1 ) e. ZZ ) |
| 85 |
53
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( b + 1 ) + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. ZZ ) |
| 86 |
85
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( ( b + 1 ) + 1 ) e. ZZ ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. RR ) |
| 87 |
34 84 86
|
syl2anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) e. RR ) |
| 88 |
|
peano2nn0 |
|- ( b e. NN0 -> ( b + 1 ) e. NN0 ) |
| 89 |
88
|
adantr |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( b + 1 ) e. NN0 ) |
| 90 |
52 89
|
reexpcld |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. A ) ^ ( b + 1 ) ) e. RR ) |
| 91 |
|
letr |
|- ( ( ( A rmY ( ( b + 1 ) + 1 ) ) e. RR /\ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) e. RR /\ ( ( 2 x. A ) ^ ( b + 1 ) ) e. RR ) -> ( ( ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) /\ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) |
| 92 |
87 57 90 91
|
syl3anc |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) ) -> ( ( ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) /\ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) |
| 93 |
92
|
3adant3 |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( ( ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) /\ ( ( 2 x. A ) x. ( A rmY ( b + 1 ) ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) |
| 94 |
65 83 93
|
mp2and |
|- ( ( b e. NN0 /\ A e. ( ZZ>= ` 2 ) /\ ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) |
| 95 |
94
|
3exp |
|- ( b e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) ) |
| 96 |
95
|
a2d |
|- ( b e. NN0 -> ( ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( b + 1 ) ) <_ ( ( 2 x. A ) ^ b ) ) -> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( ( b + 1 ) + 1 ) ) <_ ( ( 2 x. A ) ^ ( b + 1 ) ) ) ) ) |
| 97 |
5 10 15 20 33 96
|
nn0ind |
|- ( N e. NN0 -> ( A e. ( ZZ>= ` 2 ) -> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) ) |
| 98 |
97
|
impcom |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY ( N + 1 ) ) <_ ( ( 2 x. A ) ^ N ) ) |