Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
1z |
|- 1 e. ZZ |
3 |
|
zsubcl |
|- ( ( N e. ZZ /\ 1 e. ZZ ) -> ( N - 1 ) e. ZZ ) |
4 |
1 2 3
|
sylancl |
|- ( N e. NN -> ( N - 1 ) e. ZZ ) |
5 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
6 |
5
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
7 |
4 6
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
8 |
7
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N - 1 ) ) e. RR ) |
9 |
5
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
10 |
1 9
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. ZZ ) |
11 |
10
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. RR ) |
12 |
8 11
|
readdcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) e. RR ) |
13 |
|
2re |
|- 2 e. RR |
14 |
|
remulcl |
|- ( ( 2 e. RR /\ ( A rmY N ) e. RR ) -> ( 2 x. ( A rmY N ) ) e. RR ) |
15 |
13 11 14
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY N ) ) e. RR ) |
16 |
15 8
|
resubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) e. RR ) |
17 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
18 |
17
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
19 |
1 18
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmX N ) e. NN0 ) |
20 |
19
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmX N ) e. RR ) |
21 |
11 8
|
resubcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) e. RR ) |
22 |
|
remulcl |
|- ( ( 2 e. RR /\ ( A rmY ( N - 1 ) ) e. RR ) -> ( 2 x. ( A rmY ( N - 1 ) ) ) e. RR ) |
23 |
13 8 22
|
sylancr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY ( N - 1 ) ) ) e. RR ) |
24 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
25 |
24
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. RR ) |
26 |
25 8
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A x. ( A rmY ( N - 1 ) ) ) e. RR ) |
27 |
8 25
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) x. A ) e. RR ) |
28 |
17
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmX ( N - 1 ) ) e. NN0 ) |
29 |
4 28
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmX ( N - 1 ) ) e. NN0 ) |
30 |
29
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmX ( N - 1 ) ) e. RR ) |
31 |
27 30
|
readdcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) e. RR ) |
32 |
13
|
a1i |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 2 e. RR ) |
33 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
34 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. NN0 ) -> ( 0 < ( A rmX ( N - 1 ) ) /\ 0 <_ ( A rmY ( N - 1 ) ) ) ) |
35 |
34
|
simprd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. NN0 ) -> 0 <_ ( A rmY ( N - 1 ) ) ) |
36 |
33 35
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 <_ ( A rmY ( N - 1 ) ) ) |
37 |
|
eluzle |
|- ( A e. ( ZZ>= ` 2 ) -> 2 <_ A ) |
38 |
37
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 2 <_ A ) |
39 |
32 25 8 36 38
|
lemul1ad |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY ( N - 1 ) ) ) <_ ( A x. ( A rmY ( N - 1 ) ) ) ) |
40 |
25
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. CC ) |
41 |
8
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N - 1 ) ) e. CC ) |
42 |
40 41
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A x. ( A rmY ( N - 1 ) ) ) = ( ( A rmY ( N - 1 ) ) x. A ) ) |
43 |
34
|
simpld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. NN0 ) -> 0 < ( A rmX ( N - 1 ) ) ) |
44 |
33 43
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmX ( N - 1 ) ) ) |
45 |
30 27
|
ltaddposd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < ( A rmX ( N - 1 ) ) <-> ( ( A rmY ( N - 1 ) ) x. A ) < ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) ) |
46 |
44 45
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) x. A ) < ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) |
47 |
42 46
|
eqbrtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A x. ( A rmY ( N - 1 ) ) ) < ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) |
48 |
23 26 31 39 47
|
lelttrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY ( N - 1 ) ) ) < ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) |
49 |
41
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY ( N - 1 ) ) ) = ( ( A rmY ( N - 1 ) ) + ( A rmY ( N - 1 ) ) ) ) |
50 |
|
rmyp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmY ( ( N - 1 ) + 1 ) ) = ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) |
51 |
4 50
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N - 1 ) + 1 ) ) = ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) ) |
52 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
53 |
52
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. RR ) |
54 |
53
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. CC ) |
55 |
|
ax-1cn |
|- 1 e. CC |
56 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
57 |
54 55 56
|
sylancl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
58 |
57
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( ( N - 1 ) + 1 ) ) = ( A rmY N ) ) |
59 |
51 58
|
eqtr3d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A rmY ( N - 1 ) ) x. A ) + ( A rmX ( N - 1 ) ) ) = ( A rmY N ) ) |
60 |
48 49 59
|
3brtr3d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY ( N - 1 ) ) ) < ( A rmY N ) ) |
61 |
8 8 11
|
ltaddsubd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A rmY ( N - 1 ) ) + ( A rmY ( N - 1 ) ) ) < ( A rmY N ) <-> ( A rmY ( N - 1 ) ) < ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) ) ) |
62 |
60 61
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N - 1 ) ) < ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) ) |
63 |
8 21 11 62
|
ltadd1dd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) < ( ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) + ( A rmY N ) ) ) |
64 |
11
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. CC ) |
65 |
64
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY N ) ) = ( ( A rmY N ) + ( A rmY N ) ) ) |
66 |
65
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( ( ( A rmY N ) + ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |
67 |
64 64 41
|
addsubd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A rmY N ) + ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) + ( A rmY N ) ) ) |
68 |
66 67
|
eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( ( ( A rmY N ) - ( A rmY ( N - 1 ) ) ) + ( A rmY N ) ) ) |
69 |
63 68
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) < ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |
70 |
25 11
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A x. ( A rmY N ) ) e. RR ) |
71 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
72 |
71
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) = 0 ) |
73 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
74 |
73
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < N ) |
75 |
|
simpl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. ( ZZ>= ` 2 ) ) |
76 |
|
0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 e. ZZ ) |
77 |
1
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) |
78 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ N e. ZZ ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
79 |
75 76 77 78
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) |
80 |
74 79
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) < ( A rmY N ) ) |
81 |
72 80
|
eqbrtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY N ) ) |
82 |
|
lemul1 |
|- ( ( 2 e. RR /\ A e. RR /\ ( ( A rmY N ) e. RR /\ 0 < ( A rmY N ) ) ) -> ( 2 <_ A <-> ( 2 x. ( A rmY N ) ) <_ ( A x. ( A rmY N ) ) ) ) |
83 |
32 25 11 81 82
|
syl112anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 <_ A <-> ( 2 x. ( A rmY N ) ) <_ ( A x. ( A rmY N ) ) ) ) |
84 |
38 83
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 2 x. ( A rmY N ) ) <_ ( A x. ( A rmY N ) ) ) |
85 |
15 70 8 84
|
lesub1dd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) <_ ( ( A x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) ) |
86 |
|
rmym1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N - 1 ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |
87 |
1 86
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY ( N - 1 ) ) = ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) ) |
88 |
64 40
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY N ) x. A ) = ( A x. ( A rmY N ) ) ) |
89 |
88
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A rmY N ) x. A ) - ( A rmX N ) ) = ( ( A x. ( A rmY N ) ) - ( A rmX N ) ) ) |
90 |
87 89
|
eqtr2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A x. ( A rmY N ) ) - ( A rmX N ) ) = ( A rmY ( N - 1 ) ) ) |
91 |
70
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A x. ( A rmY N ) ) e. CC ) |
92 |
20
|
recnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmX N ) e. CC ) |
93 |
|
subsub23 |
|- ( ( ( A x. ( A rmY N ) ) e. CC /\ ( A rmX N ) e. CC /\ ( A rmY ( N - 1 ) ) e. CC ) -> ( ( ( A x. ( A rmY N ) ) - ( A rmX N ) ) = ( A rmY ( N - 1 ) ) <-> ( ( A x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( A rmX N ) ) ) |
94 |
91 92 41 93
|
syl3anc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( ( A x. ( A rmY N ) ) - ( A rmX N ) ) = ( A rmY ( N - 1 ) ) <-> ( ( A x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( A rmX N ) ) ) |
95 |
90 94
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) = ( A rmX N ) ) |
96 |
85 95
|
breqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( 2 x. ( A rmY N ) ) - ( A rmY ( N - 1 ) ) ) <_ ( A rmX N ) ) |
97 |
12 16 20 69 96
|
ltletrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) < ( A rmX N ) ) |