Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1l |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> A e. ZZ ) |
2 |
|
simpl2l |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> C e. ZZ ) |
3 |
|
simpl2r |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> D e. ZZ ) |
4 |
|
simpl1r |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> B e. ZZ ) |
5 |
|
simpl3 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> ( A || ( C - D ) \/ A || ( C - -u D ) ) ) |
6 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> ( A || ( D - B ) \/ A || ( D - -u B ) ) ) |
7 |
|
acongtr |
|- ( ( ( A e. ZZ /\ C e. ZZ ) /\ ( D e. ZZ /\ B e. ZZ ) /\ ( ( A || ( C - D ) \/ A || ( C - -u D ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) |
8 |
1 2 3 4 5 6 7
|
syl222anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( D - B ) \/ A || ( D - -u B ) ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) |
9 |
|
simpl1l |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> A e. ZZ ) |
10 |
|
simpl2r |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> D e. ZZ ) |
11 |
|
simpl2l |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> C e. ZZ ) |
12 |
|
simpl1r |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> B e. ZZ ) |
13 |
|
simpl3 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> ( A || ( C - D ) \/ A || ( C - -u D ) ) ) |
14 |
|
acongsym |
|- ( ( ( A e. ZZ /\ C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) -> ( A || ( D - C ) \/ A || ( D - -u C ) ) ) |
15 |
9 11 10 13 14
|
syl31anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> ( A || ( D - C ) \/ A || ( D - -u C ) ) ) |
16 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) |
17 |
|
acongtr |
|- ( ( ( A e. ZZ /\ D e. ZZ ) /\ ( C e. ZZ /\ B e. ZZ ) /\ ( ( A || ( D - C ) \/ A || ( D - -u C ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) ) -> ( A || ( D - B ) \/ A || ( D - -u B ) ) ) |
18 |
9 10 11 12 15 16 17
|
syl222anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) /\ ( A || ( C - B ) \/ A || ( C - -u B ) ) ) -> ( A || ( D - B ) \/ A || ( D - -u B ) ) ) |
19 |
8 18
|
impbida |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ D e. ZZ ) /\ ( A || ( C - D ) \/ A || ( C - -u D ) ) ) -> ( ( A || ( D - B ) \/ A || ( D - -u B ) ) <-> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) ) |