Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> A e. ( ZZ>= ` 2 ) ) |
2 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
3 |
2
|
adantr |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> K e. ZZ ) |
4 |
3
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K e. ZZ ) |
5 |
|
rmyabs |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ ) -> ( abs ` ( A rmY K ) ) = ( A rmY ( abs ` K ) ) ) |
6 |
1 4 5
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` ( A rmY K ) ) = ( A rmY ( abs ` K ) ) ) |
7 |
3
|
zred |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> K e. RR ) |
8 |
7
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K e. RR ) |
9 |
|
elfzle1 |
|- ( K e. ( 0 ... N ) -> 0 <_ K ) |
10 |
9
|
adantr |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> 0 <_ K ) |
11 |
10
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> 0 <_ K ) |
12 |
8 11
|
absidd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` K ) = K ) |
13 |
12
|
oveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY ( abs ` K ) ) = ( A rmY K ) ) |
14 |
6 13
|
eqtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` ( A rmY K ) ) = ( A rmY K ) ) |
15 |
|
elfzelz |
|- ( M e. ( 0 ... N ) -> M e. ZZ ) |
16 |
15
|
adantl |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> M e. ZZ ) |
17 |
16
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> M e. ZZ ) |
18 |
|
rmyabs |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( abs ` ( A rmY M ) ) = ( A rmY ( abs ` M ) ) ) |
19 |
1 17 18
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` ( A rmY M ) ) = ( A rmY ( abs ` M ) ) ) |
20 |
16
|
zred |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> M e. RR ) |
21 |
20
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> M e. RR ) |
22 |
|
elfzle1 |
|- ( M e. ( 0 ... N ) -> 0 <_ M ) |
23 |
22
|
adantl |
|- ( ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) -> 0 <_ M ) |
24 |
23
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> 0 <_ M ) |
25 |
21 24
|
absidd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` M ) = M ) |
26 |
25
|
oveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY ( abs ` M ) ) = ( A rmY M ) ) |
27 |
19 26
|
eqtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( abs ` ( A rmY M ) ) = ( A rmY M ) ) |
28 |
14 27
|
oveq12d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) = ( ( A rmY K ) + ( A rmY M ) ) ) |
29 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
30 |
29
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ ) -> ( A rmY K ) e. ZZ ) |
31 |
1 4 30
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) e. ZZ ) |
32 |
31
|
zred |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) e. RR ) |
33 |
29
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY M ) e. ZZ ) |
34 |
1 17 33
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY M ) e. ZZ ) |
35 |
34
|
zred |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY M ) e. RR ) |
36 |
32 35
|
readdcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY K ) + ( A rmY M ) ) e. RR ) |
37 |
|
simpllr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> N e. NN ) |
38 |
37
|
nnzd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> N e. ZZ ) |
39 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
40 |
38 39
|
syl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( N - 1 ) e. ZZ ) |
41 |
29
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( N - 1 ) e. ZZ ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
42 |
1 40 41
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY ( N - 1 ) ) e. ZZ ) |
43 |
42
|
zred |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY ( N - 1 ) ) e. RR ) |
44 |
29
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
45 |
1 38 44
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY N ) e. ZZ ) |
46 |
45
|
zred |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY N ) e. RR ) |
47 |
43 46
|
readdcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) e. RR ) |
48 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
49 |
48
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
50 |
1 38 49
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmX N ) e. NN0 ) |
51 |
50
|
nn0red |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmX N ) e. RR ) |
52 |
|
elfzle2 |
|- ( K e. ( 0 ... ( N - 1 ) ) -> K <_ ( N - 1 ) ) |
53 |
52
|
adantl |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> K <_ ( N - 1 ) ) |
54 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( K <_ ( N - 1 ) <-> ( A rmY K ) <_ ( A rmY ( N - 1 ) ) ) ) |
55 |
1 4 40 54
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( K <_ ( N - 1 ) <-> ( A rmY K ) <_ ( A rmY ( N - 1 ) ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( K <_ ( N - 1 ) <-> ( A rmY K ) <_ ( A rmY ( N - 1 ) ) ) ) |
57 |
53 56
|
mpbid |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( A rmY K ) <_ ( A rmY ( N - 1 ) ) ) |
58 |
|
simplrr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> M e. ( 0 ... N ) ) |
59 |
|
elfzle2 |
|- ( M e. ( 0 ... N ) -> M <_ N ) |
60 |
58 59
|
syl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> M <_ N ) |
61 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> ( A rmY M ) <_ ( A rmY N ) ) ) |
62 |
1 17 38 61
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( M <_ N <-> ( A rmY M ) <_ ( A rmY N ) ) ) |
63 |
60 62
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY M ) <_ ( A rmY N ) ) |
64 |
63
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( A rmY M ) <_ ( A rmY N ) ) |
65 |
|
le2add |
|- ( ( ( ( A rmY K ) e. RR /\ ( A rmY M ) e. RR ) /\ ( ( A rmY ( N - 1 ) ) e. RR /\ ( A rmY N ) e. RR ) ) -> ( ( ( A rmY K ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY M ) <_ ( A rmY N ) ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
66 |
32 35 43 46 65
|
syl22anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( ( A rmY K ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY M ) <_ ( A rmY N ) ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
67 |
66
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( A rmY K ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY M ) <_ ( A rmY N ) ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
68 |
57 64 67
|
mp2and |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K e. ( 0 ... ( N - 1 ) ) ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) |
69 |
31
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) e. CC ) |
70 |
34
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY M ) e. CC ) |
71 |
69 70
|
addcomd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY K ) + ( A rmY M ) ) = ( ( A rmY M ) + ( A rmY K ) ) ) |
72 |
71
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( ( A rmY K ) + ( A rmY M ) ) = ( ( A rmY M ) + ( A rmY K ) ) ) |
73 |
|
id |
|- ( K =/= M -> K =/= M ) |
74 |
73
|
necomd |
|- ( K =/= M -> M =/= K ) |
75 |
74
|
adantr |
|- ( ( K =/= M /\ K = N ) -> M =/= K ) |
76 |
|
simpr |
|- ( ( K =/= M /\ K = N ) -> K = N ) |
77 |
75 76
|
neeqtrd |
|- ( ( K =/= M /\ K = N ) -> M =/= N ) |
78 |
77
|
neneqd |
|- ( ( K =/= M /\ K = N ) -> -. M = N ) |
79 |
78
|
adantll |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> -. M = N ) |
80 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
81 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
82 |
80 81
|
eleqtrdi |
|- ( N e. NN -> N e. ( ZZ>= ` 0 ) ) |
83 |
82
|
ad4antlr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> N e. ( ZZ>= ` 0 ) ) |
84 |
|
simprr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> M e. ( 0 ... N ) ) |
85 |
84
|
ad2antrr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> M e. ( 0 ... N ) ) |
86 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( M e. ( 0 ... N ) <-> ( M e. ( 0 ... ( N - 1 ) ) \/ M = N ) ) ) |
87 |
86
|
biimpa |
|- ( ( N e. ( ZZ>= ` 0 ) /\ M e. ( 0 ... N ) ) -> ( M e. ( 0 ... ( N - 1 ) ) \/ M = N ) ) |
88 |
83 85 87
|
syl2anc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( M e. ( 0 ... ( N - 1 ) ) \/ M = N ) ) |
89 |
|
orel2 |
|- ( -. M = N -> ( ( M e. ( 0 ... ( N - 1 ) ) \/ M = N ) -> M e. ( 0 ... ( N - 1 ) ) ) ) |
90 |
79 88 89
|
sylc |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> M e. ( 0 ... ( N - 1 ) ) ) |
91 |
|
elfzle2 |
|- ( M e. ( 0 ... ( N - 1 ) ) -> M <_ ( N - 1 ) ) |
92 |
90 91
|
syl |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> M <_ ( N - 1 ) ) |
93 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M <_ ( N - 1 ) <-> ( A rmY M ) <_ ( A rmY ( N - 1 ) ) ) ) |
94 |
1 17 40 93
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( M <_ ( N - 1 ) <-> ( A rmY M ) <_ ( A rmY ( N - 1 ) ) ) ) |
95 |
94
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( M <_ ( N - 1 ) <-> ( A rmY M ) <_ ( A rmY ( N - 1 ) ) ) ) |
96 |
92 95
|
mpbid |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( A rmY M ) <_ ( A rmY ( N - 1 ) ) ) |
97 |
|
simplrl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K e. ( 0 ... N ) ) |
98 |
|
elfzle2 |
|- ( K e. ( 0 ... N ) -> K <_ N ) |
99 |
97 98
|
syl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K <_ N ) |
100 |
|
lermy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ N e. ZZ ) -> ( K <_ N <-> ( A rmY K ) <_ ( A rmY N ) ) ) |
101 |
1 4 38 100
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( K <_ N <-> ( A rmY K ) <_ ( A rmY N ) ) ) |
102 |
99 101
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) <_ ( A rmY N ) ) |
103 |
102
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( A rmY K ) <_ ( A rmY N ) ) |
104 |
|
le2add |
|- ( ( ( ( A rmY M ) e. RR /\ ( A rmY K ) e. RR ) /\ ( ( A rmY ( N - 1 ) ) e. RR /\ ( A rmY N ) e. RR ) ) -> ( ( ( A rmY M ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY K ) <_ ( A rmY N ) ) -> ( ( A rmY M ) + ( A rmY K ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
105 |
35 32 43 46 104
|
syl22anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( ( A rmY M ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY K ) <_ ( A rmY N ) ) -> ( ( A rmY M ) + ( A rmY K ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
106 |
105
|
adantr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( ( ( A rmY M ) <_ ( A rmY ( N - 1 ) ) /\ ( A rmY K ) <_ ( A rmY N ) ) -> ( ( A rmY M ) + ( A rmY K ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) ) |
107 |
96 103 106
|
mp2and |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( ( A rmY M ) + ( A rmY K ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) |
108 |
72 107
|
eqbrtrd |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) /\ K = N ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) |
109 |
37
|
nnnn0d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> N e. NN0 ) |
110 |
109 81
|
eleqtrdi |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> N e. ( ZZ>= ` 0 ) ) |
111 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( K e. ( 0 ... N ) <-> ( K e. ( 0 ... ( N - 1 ) ) \/ K = N ) ) ) |
112 |
111
|
biimpa |
|- ( ( N e. ( ZZ>= ` 0 ) /\ K e. ( 0 ... N ) ) -> ( K e. ( 0 ... ( N - 1 ) ) \/ K = N ) ) |
113 |
110 97 112
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( K e. ( 0 ... ( N - 1 ) ) \/ K = N ) ) |
114 |
68 108 113
|
mpjaodan |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY K ) + ( A rmY M ) ) <_ ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) ) |
115 |
|
jm2.24 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) < ( A rmX N ) ) |
116 |
1 38 115
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY ( N - 1 ) ) + ( A rmY N ) ) < ( A rmX N ) ) |
117 |
36 47 51 114 116
|
lelttrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( A rmY K ) + ( A rmY M ) ) < ( A rmX N ) ) |
118 |
28 117
|
eqbrtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) ) |
119 |
|
simpr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K =/= M ) |
120 |
|
rmyeq |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ M e. ZZ ) -> ( K = M <-> ( A rmY K ) = ( A rmY M ) ) ) |
121 |
120
|
necon3bid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ M e. ZZ ) -> ( K =/= M <-> ( A rmY K ) =/= ( A rmY M ) ) ) |
122 |
1 4 17 121
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( K =/= M <-> ( A rmY K ) =/= ( A rmY M ) ) ) |
123 |
119 122
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) =/= ( A rmY M ) ) |
124 |
7
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> K e. RR ) |
125 |
|
0red |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> 0 e. RR ) |
126 |
|
simpr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> K = -u M ) |
127 |
22
|
ad2antll |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> 0 <_ M ) |
128 |
20
|
adantl |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> M e. RR ) |
129 |
128
|
le0neg2d |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( 0 <_ M <-> -u M <_ 0 ) ) |
130 |
127 129
|
mpbid |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> -u M <_ 0 ) |
131 |
130
|
adantr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> -u M <_ 0 ) |
132 |
126 131
|
eqbrtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> K <_ 0 ) |
133 |
10
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> 0 <_ K ) |
134 |
|
letri3 |
|- ( ( K e. RR /\ 0 e. RR ) -> ( K = 0 <-> ( K <_ 0 /\ 0 <_ K ) ) ) |
135 |
134
|
biimpar |
|- ( ( ( K e. RR /\ 0 e. RR ) /\ ( K <_ 0 /\ 0 <_ K ) ) -> K = 0 ) |
136 |
124 125 132 133 135
|
syl22anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> K = 0 ) |
137 |
|
simpr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> K = 0 ) |
138 |
|
simplr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> K = -u M ) |
139 |
138 137
|
eqtr3d |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> -u M = 0 ) |
140 |
128
|
recnd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> M e. CC ) |
141 |
140
|
ad2antrr |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> M e. CC ) |
142 |
141
|
negeq0d |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> ( M = 0 <-> -u M = 0 ) ) |
143 |
139 142
|
mpbird |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> M = 0 ) |
144 |
137 143
|
eqtr4d |
|- ( ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) /\ K = 0 ) -> K = M ) |
145 |
136 144
|
mpdan |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K = -u M ) -> K = M ) |
146 |
145
|
ex |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( K = -u M -> K = M ) ) |
147 |
146
|
necon3d |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( K =/= M -> K =/= -u M ) ) |
148 |
147
|
imp |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> K =/= -u M ) |
149 |
58 15
|
syl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> M e. ZZ ) |
150 |
149
|
znegcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> -u M e. ZZ ) |
151 |
|
rmyeq |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ -u M e. ZZ ) -> ( K = -u M <-> ( A rmY K ) = ( A rmY -u M ) ) ) |
152 |
151
|
necon3bid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ K e. ZZ /\ -u M e. ZZ ) -> ( K =/= -u M <-> ( A rmY K ) =/= ( A rmY -u M ) ) ) |
153 |
1 4 150 152
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( K =/= -u M <-> ( A rmY K ) =/= ( A rmY -u M ) ) ) |
154 |
148 153
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) =/= ( A rmY -u M ) ) |
155 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ ) -> ( A rmY -u M ) = -u ( A rmY M ) ) |
156 |
1 17 155
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY -u M ) = -u ( A rmY M ) ) |
157 |
154 156
|
neeqtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( A rmY K ) =/= -u ( A rmY M ) ) |
158 |
118 123 157
|
3jca |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ K =/= M ) -> ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) |
159 |
158
|
ex |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( K =/= M -> ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) ) |
160 |
|
simplll |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> A e. ( ZZ>= ` 2 ) ) |
161 |
3
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> K e. ZZ ) |
162 |
160 161 30
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY K ) e. ZZ ) |
163 |
162
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY K ) e. CC ) |
164 |
16
|
ad2antlr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> M e. ZZ ) |
165 |
160 164 33
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY M ) e. ZZ ) |
166 |
165
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY M ) e. CC ) |
167 |
163 166
|
negsubd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) + -u ( A rmY M ) ) = ( ( A rmY K ) - ( A rmY M ) ) ) |
168 |
167
|
fveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + -u ( A rmY M ) ) ) = ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) ) |
169 |
166
|
negcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -u ( A rmY M ) e. CC ) |
170 |
163 169
|
addcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) + -u ( A rmY M ) ) e. CC ) |
171 |
170
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + -u ( A rmY M ) ) ) e. RR ) |
172 |
163
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( A rmY K ) ) e. RR ) |
173 |
166
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( A rmY M ) ) e. RR ) |
174 |
172 173
|
readdcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) e. RR ) |
175 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
176 |
175
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) |
177 |
176
|
ad2antrr |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> N e. ZZ ) |
178 |
49
|
nn0zd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. ZZ ) |
179 |
160 177 178
|
syl2anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmX N ) e. ZZ ) |
180 |
179
|
zred |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmX N ) e. RR ) |
181 |
163 169
|
abstrid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + -u ( A rmY M ) ) ) <_ ( ( abs ` ( A rmY K ) ) + ( abs ` -u ( A rmY M ) ) ) ) |
182 |
|
absneg |
|- ( ( A rmY M ) e. CC -> ( abs ` -u ( A rmY M ) ) = ( abs ` ( A rmY M ) ) ) |
183 |
182
|
eqcomd |
|- ( ( A rmY M ) e. CC -> ( abs ` ( A rmY M ) ) = ( abs ` -u ( A rmY M ) ) ) |
184 |
166 183
|
syl |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( A rmY M ) ) = ( abs ` -u ( A rmY M ) ) ) |
185 |
184
|
oveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) = ( ( abs ` ( A rmY K ) ) + ( abs ` -u ( A rmY M ) ) ) ) |
186 |
181 185
|
breqtrrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + -u ( A rmY M ) ) ) <_ ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) ) |
187 |
|
simpr1 |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) ) |
188 |
171 174 180 186 187
|
lelttrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + -u ( A rmY M ) ) ) < ( A rmX N ) ) |
189 |
168 188
|
eqbrtrrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) < ( A rmX N ) ) |
190 |
162 165
|
zsubcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - ( A rmY M ) ) e. ZZ ) |
191 |
190
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - ( A rmY M ) ) e. CC ) |
192 |
191
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) e. RR ) |
193 |
192 180
|
ltnled |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) < ( A rmX N ) <-> -. ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) ) ) |
194 |
189 193
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -. ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) ) |
195 |
|
simpr2 |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY K ) =/= ( A rmY M ) ) |
196 |
163 166 195
|
subne0d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - ( A rmY M ) ) =/= 0 ) |
197 |
|
dvdsleabs |
|- ( ( ( A rmX N ) e. ZZ /\ ( ( A rmY K ) - ( A rmY M ) ) e. ZZ /\ ( ( A rmY K ) - ( A rmY M ) ) =/= 0 ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) -> ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) ) ) |
198 |
179 190 196 197
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) -> ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - ( A rmY M ) ) ) ) ) |
199 |
194 198
|
mtod |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -. ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) ) |
200 |
163 166
|
subnegd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - -u ( A rmY M ) ) = ( ( A rmY K ) + ( A rmY M ) ) ) |
201 |
200
|
fveq2d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) = ( abs ` ( ( A rmY K ) + ( A rmY M ) ) ) ) |
202 |
163 166
|
addcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) + ( A rmY M ) ) e. CC ) |
203 |
202
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + ( A rmY M ) ) ) e. RR ) |
204 |
163 166
|
abstrid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + ( A rmY M ) ) ) <_ ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) ) |
205 |
203 174 180 204 187
|
lelttrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) + ( A rmY M ) ) ) < ( A rmX N ) ) |
206 |
201 205
|
eqbrtrd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) < ( A rmX N ) ) |
207 |
165
|
znegcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -u ( A rmY M ) e. ZZ ) |
208 |
162 207
|
zsubcld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - -u ( A rmY M ) ) e. ZZ ) |
209 |
208
|
zcnd |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - -u ( A rmY M ) ) e. CC ) |
210 |
209
|
abscld |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) e. RR ) |
211 |
210 180
|
ltnled |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) < ( A rmX N ) <-> -. ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
212 |
206 211
|
mpbid |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -. ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
213 |
|
simpr3 |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( A rmY K ) =/= -u ( A rmY M ) ) |
214 |
163 169 213
|
subne0d |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmY K ) - -u ( A rmY M ) ) =/= 0 ) |
215 |
|
dvdsleabs |
|- ( ( ( A rmX N ) e. ZZ /\ ( ( A rmY K ) - -u ( A rmY M ) ) e. ZZ /\ ( ( A rmY K ) - -u ( A rmY M ) ) =/= 0 ) -> ( ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) -> ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
216 |
179 208 214 215
|
syl3anc |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) -> ( A rmX N ) <_ ( abs ` ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
217 |
212 216
|
mtod |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -. ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) |
218 |
199 217
|
jca |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> ( -. ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) /\ -. ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
219 |
|
pm4.56 |
|- ( ( -. ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) /\ -. ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) <-> -. ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
220 |
218 219
|
sylib |
|- ( ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) /\ ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) ) -> -. ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) |
221 |
220
|
ex |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( ( ( ( abs ` ( A rmY K ) ) + ( abs ` ( A rmY M ) ) ) < ( A rmX N ) /\ ( A rmY K ) =/= ( A rmY M ) /\ ( A rmY K ) =/= -u ( A rmY M ) ) -> -. ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
222 |
159 221
|
syld |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( K =/= M -> -. ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) ) |
223 |
222
|
necon4ad |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) ) -> ( ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) -> K = M ) ) |
224 |
223
|
3impia |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) /\ ( K e. ( 0 ... N ) /\ M e. ( 0 ... N ) ) /\ ( ( A rmX N ) || ( ( A rmY K ) - ( A rmY M ) ) \/ ( A rmX N ) || ( ( A rmY K ) - -u ( A rmY M ) ) ) ) -> K = M ) |