Step |
Hyp |
Ref |
Expression |
1 |
|
joincl.b |
|- B = ( Base ` K ) |
2 |
|
joincl.j |
|- .\/ = ( join ` K ) |
3 |
|
joincl.k |
|- ( ph -> K e. V ) |
4 |
|
joincl.x |
|- ( ph -> X e. B ) |
5 |
|
joincl.y |
|- ( ph -> Y e. B ) |
6 |
|
joincl.e |
|- ( ph -> <. X , Y >. e. dom .\/ ) |
7 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
8 |
7 2 3 4 5
|
joinval |
|- ( ph -> ( X .\/ Y ) = ( ( lub ` K ) ` { X , Y } ) ) |
9 |
7 2 3 4 5
|
joindef |
|- ( ph -> ( <. X , Y >. e. dom .\/ <-> { X , Y } e. dom ( lub ` K ) ) ) |
10 |
6 9
|
mpbid |
|- ( ph -> { X , Y } e. dom ( lub ` K ) ) |
11 |
1 7 3 10
|
lubcl |
|- ( ph -> ( ( lub ` K ) ` { X , Y } ) e. B ) |
12 |
8 11
|
eqeltrd |
|- ( ph -> ( X .\/ Y ) e. B ) |