Step |
Hyp |
Ref |
Expression |
1 |
|
joindef.u |
|- U = ( lub ` K ) |
2 |
|
joindef.j |
|- .\/ = ( join ` K ) |
3 |
|
joindef.k |
|- ( ph -> K e. V ) |
4 |
|
joindef.x |
|- ( ph -> X e. W ) |
5 |
|
joindef.y |
|- ( ph -> Y e. Z ) |
6 |
1 2
|
joindm |
|- ( K e. V -> dom .\/ = { <. x , y >. | { x , y } e. dom U } ) |
7 |
6
|
eleq2d |
|- ( K e. V -> ( <. X , Y >. e. dom .\/ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } ) ) |
8 |
3 7
|
syl |
|- ( ph -> ( <. X , Y >. e. dom .\/ <-> <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } ) ) |
9 |
|
preq1 |
|- ( x = X -> { x , y } = { X , y } ) |
10 |
9
|
eleq1d |
|- ( x = X -> ( { x , y } e. dom U <-> { X , y } e. dom U ) ) |
11 |
|
preq2 |
|- ( y = Y -> { X , y } = { X , Y } ) |
12 |
11
|
eleq1d |
|- ( y = Y -> ( { X , y } e. dom U <-> { X , Y } e. dom U ) ) |
13 |
10 12
|
opelopabg |
|- ( ( X e. W /\ Y e. Z ) -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } <-> { X , Y } e. dom U ) ) |
14 |
4 5 13
|
syl2anc |
|- ( ph -> ( <. X , Y >. e. { <. x , y >. | { x , y } e. dom U } <-> { X , Y } e. dom U ) ) |
15 |
8 14
|
bitrd |
|- ( ph -> ( <. X , Y >. e. dom .\/ <-> { X , Y } e. dom U ) ) |