| Step |
Hyp |
Ref |
Expression |
| 1 |
|
joinfval.u |
|- U = ( lub ` K ) |
| 2 |
|
joinfval.j |
|- .\/ = ( join ` K ) |
| 3 |
1 2
|
joinfval |
|- ( K e. V -> .\/ = { <. <. x , y >. , z >. | { x , y } U z } ) |
| 4 |
1
|
lubfun |
|- Fun U |
| 5 |
|
funbrfv2b |
|- ( Fun U -> ( { x , y } U z <-> ( { x , y } e. dom U /\ ( U ` { x , y } ) = z ) ) ) |
| 6 |
4 5
|
ax-mp |
|- ( { x , y } U z <-> ( { x , y } e. dom U /\ ( U ` { x , y } ) = z ) ) |
| 7 |
|
eqcom |
|- ( ( U ` { x , y } ) = z <-> z = ( U ` { x , y } ) ) |
| 8 |
7
|
anbi2i |
|- ( ( { x , y } e. dom U /\ ( U ` { x , y } ) = z ) <-> ( { x , y } e. dom U /\ z = ( U ` { x , y } ) ) ) |
| 9 |
6 8
|
bitri |
|- ( { x , y } U z <-> ( { x , y } e. dom U /\ z = ( U ` { x , y } ) ) ) |
| 10 |
9
|
oprabbii |
|- { <. <. x , y >. , z >. | { x , y } U z } = { <. <. x , y >. , z >. | ( { x , y } e. dom U /\ z = ( U ` { x , y } ) ) } |
| 11 |
3 10
|
eqtrdi |
|- ( K e. V -> .\/ = { <. <. x , y >. , z >. | ( { x , y } e. dom U /\ z = ( U ` { x , y } ) ) } ) |