| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							joinle.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							joinle.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							joinle.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							joinle.k | 
							 |-  ( ph -> K e. Poset )  | 
						
						
							| 5 | 
							
								
							 | 
							joinle.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							joinle.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							joinle.z | 
							 |-  ( ph -> Z e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							joinle.e | 
							 |-  ( ph -> <. X , Y >. e. dom .\/ )  | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							 |-  ( z = Z -> ( X .<_ z <-> X .<_ Z ) )  | 
						
						
							| 10 | 
							
								
							 | 
							breq2 | 
							 |-  ( z = Z -> ( Y .<_ z <-> Y .<_ Z ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							anbi12d | 
							 |-  ( z = Z -> ( ( X .<_ z /\ Y .<_ z ) <-> ( X .<_ Z /\ Y .<_ Z ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq2 | 
							 |-  ( z = Z -> ( ( X .\/ Y ) .<_ z <-> ( X .\/ Y ) .<_ Z ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							imbi12d | 
							 |-  ( z = Z -> ( ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) <-> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) )  | 
						
						
							| 14 | 
							
								1 2 3 4 5 6 8
							 | 
							joinlem | 
							 |-  ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simprd | 
							 |-  ( ph -> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) )  | 
						
						
							| 16 | 
							
								13 15 7
							 | 
							rspcdva | 
							 |-  ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 8
							 | 
							lejoin1 | 
							 |-  ( ph -> X .<_ ( X .\/ Y ) )  | 
						
						
							| 18 | 
							
								1 3 4 5 6 8
							 | 
							joincl | 
							 |-  ( ph -> ( X .\/ Y ) e. B )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							postr | 
							 |-  ( ( K e. Poset /\ ( X e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) )  | 
						
						
							| 20 | 
							
								4 5 18 7 19
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							mpand | 
							 |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> X .<_ Z ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 8
							 | 
							lejoin2 | 
							 |-  ( ph -> Y .<_ ( X .\/ Y ) )  | 
						
						
							| 23 | 
							
								1 2
							 | 
							postr | 
							 |-  ( ( K e. Poset /\ ( Y e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) )  | 
						
						
							| 24 | 
							
								4 6 18 7 23
							 | 
							syl13anc | 
							 |-  ( ph -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							mpand | 
							 |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> Y .<_ Z ) )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							jcad | 
							 |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> ( X .<_ Z /\ Y .<_ Z ) ) )  | 
						
						
							| 27 | 
							
								16 26
							 | 
							impbid | 
							 |-  ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) <-> ( X .\/ Y ) .<_ Z ) )  |