Step |
Hyp |
Ref |
Expression |
1 |
|
joinle.b |
|- B = ( Base ` K ) |
2 |
|
joinle.l |
|- .<_ = ( le ` K ) |
3 |
|
joinle.j |
|- .\/ = ( join ` K ) |
4 |
|
joinle.k |
|- ( ph -> K e. Poset ) |
5 |
|
joinle.x |
|- ( ph -> X e. B ) |
6 |
|
joinle.y |
|- ( ph -> Y e. B ) |
7 |
|
joinle.z |
|- ( ph -> Z e. B ) |
8 |
|
joinle.e |
|- ( ph -> <. X , Y >. e. dom .\/ ) |
9 |
|
breq2 |
|- ( z = Z -> ( X .<_ z <-> X .<_ Z ) ) |
10 |
|
breq2 |
|- ( z = Z -> ( Y .<_ z <-> Y .<_ Z ) ) |
11 |
9 10
|
anbi12d |
|- ( z = Z -> ( ( X .<_ z /\ Y .<_ z ) <-> ( X .<_ Z /\ Y .<_ Z ) ) ) |
12 |
|
breq2 |
|- ( z = Z -> ( ( X .\/ Y ) .<_ z <-> ( X .\/ Y ) .<_ Z ) ) |
13 |
11 12
|
imbi12d |
|- ( z = Z -> ( ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) <-> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) ) |
14 |
1 2 3 4 5 6 8
|
joinlem |
|- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
15 |
14
|
simprd |
|- ( ph -> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) |
16 |
13 15 7
|
rspcdva |
|- ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) |
17 |
1 2 3 4 5 6 8
|
lejoin1 |
|- ( ph -> X .<_ ( X .\/ Y ) ) |
18 |
1 3 4 5 6 8
|
joincl |
|- ( ph -> ( X .\/ Y ) e. B ) |
19 |
1 2
|
postr |
|- ( ( K e. Poset /\ ( X e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) |
20 |
4 5 18 7 19
|
syl13anc |
|- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) |
21 |
17 20
|
mpand |
|- ( ph -> ( ( X .\/ Y ) .<_ Z -> X .<_ Z ) ) |
22 |
1 2 3 4 5 6 8
|
lejoin2 |
|- ( ph -> Y .<_ ( X .\/ Y ) ) |
23 |
1 2
|
postr |
|- ( ( K e. Poset /\ ( Y e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) |
24 |
4 6 18 7 23
|
syl13anc |
|- ( ph -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) |
25 |
22 24
|
mpand |
|- ( ph -> ( ( X .\/ Y ) .<_ Z -> Y .<_ Z ) ) |
26 |
21 25
|
jcad |
|- ( ph -> ( ( X .\/ Y ) .<_ Z -> ( X .<_ Z /\ Y .<_ Z ) ) ) |
27 |
16 26
|
impbid |
|- ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) <-> ( X .\/ Y ) .<_ Z ) ) |