| Step | Hyp | Ref | Expression | 
						
							| 1 |  | joinle.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | joinle.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | joinle.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | joinle.k |  |-  ( ph -> K e. Poset ) | 
						
							| 5 |  | joinle.x |  |-  ( ph -> X e. B ) | 
						
							| 6 |  | joinle.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | joinle.z |  |-  ( ph -> Z e. B ) | 
						
							| 8 |  | joinle.e |  |-  ( ph -> <. X , Y >. e. dom .\/ ) | 
						
							| 9 |  | breq2 |  |-  ( z = Z -> ( X .<_ z <-> X .<_ Z ) ) | 
						
							| 10 |  | breq2 |  |-  ( z = Z -> ( Y .<_ z <-> Y .<_ Z ) ) | 
						
							| 11 | 9 10 | anbi12d |  |-  ( z = Z -> ( ( X .<_ z /\ Y .<_ z ) <-> ( X .<_ Z /\ Y .<_ Z ) ) ) | 
						
							| 12 |  | breq2 |  |-  ( z = Z -> ( ( X .\/ Y ) .<_ z <-> ( X .\/ Y ) .<_ Z ) ) | 
						
							| 13 | 11 12 | imbi12d |  |-  ( z = Z -> ( ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) <-> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 8 | joinlem |  |-  ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) | 
						
							| 15 | 14 | simprd |  |-  ( ph -> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) | 
						
							| 16 | 13 15 7 | rspcdva |  |-  ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) -> ( X .\/ Y ) .<_ Z ) ) | 
						
							| 17 | 1 2 3 4 5 6 8 | lejoin1 |  |-  ( ph -> X .<_ ( X .\/ Y ) ) | 
						
							| 18 | 1 3 4 5 6 8 | joincl |  |-  ( ph -> ( X .\/ Y ) e. B ) | 
						
							| 19 | 1 2 | postr |  |-  ( ( K e. Poset /\ ( X e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) | 
						
							| 20 | 4 5 18 7 19 | syl13anc |  |-  ( ph -> ( ( X .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> X .<_ Z ) ) | 
						
							| 21 | 17 20 | mpand |  |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> X .<_ Z ) ) | 
						
							| 22 | 1 2 3 4 5 6 8 | lejoin2 |  |-  ( ph -> Y .<_ ( X .\/ Y ) ) | 
						
							| 23 | 1 2 | postr |  |-  ( ( K e. Poset /\ ( Y e. B /\ ( X .\/ Y ) e. B /\ Z e. B ) ) -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) | 
						
							| 24 | 4 6 18 7 23 | syl13anc |  |-  ( ph -> ( ( Y .<_ ( X .\/ Y ) /\ ( X .\/ Y ) .<_ Z ) -> Y .<_ Z ) ) | 
						
							| 25 | 22 24 | mpand |  |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> Y .<_ Z ) ) | 
						
							| 26 | 21 25 | jcad |  |-  ( ph -> ( ( X .\/ Y ) .<_ Z -> ( X .<_ Z /\ Y .<_ Z ) ) ) | 
						
							| 27 | 16 26 | impbid |  |-  ( ph -> ( ( X .<_ Z /\ Y .<_ Z ) <-> ( X .\/ Y ) .<_ Z ) ) |