Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinlmuladdmuld.1 | |- ( ph -> A e. CC ) |
|
| joinlmuladdmuld.2 | |- ( ph -> B e. CC ) |
||
| joinlmuladdmuld.3 | |- ( ph -> C e. CC ) |
||
| joinlmuladdmuld.4 | |- ( ph -> ( ( A x. B ) + ( C x. B ) ) = D ) |
||
| Assertion | joinlmuladdmuld | |- ( ph -> ( ( A + C ) x. B ) = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlmuladdmuld.1 | |- ( ph -> A e. CC ) |
|
| 2 | joinlmuladdmuld.2 | |- ( ph -> B e. CC ) |
|
| 3 | joinlmuladdmuld.3 | |- ( ph -> C e. CC ) |
|
| 4 | joinlmuladdmuld.4 | |- ( ph -> ( ( A x. B ) + ( C x. B ) ) = D ) |
|
| 5 | 1 3 2 | adddird | |- ( ph -> ( ( A + C ) x. B ) = ( ( A x. B ) + ( C x. B ) ) ) |
| 6 | 5 4 | eqtrd | |- ( ph -> ( ( A + C ) x. B ) = D ) |