| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jplem1.1 |
|- A e. CH |
| 2 |
|
pjnorm2 |
|- ( ( A e. CH /\ u e. ~H ) -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) ) ) |
| 3 |
1 2
|
mpan |
|- ( u e. ~H -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) ) ) |
| 4 |
|
eqeq2 |
|- ( ( normh ` u ) = 1 -> ( ( normh ` ( ( projh ` A ) ` u ) ) = ( normh ` u ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 5 |
3 4
|
sylan9bb |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 6 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 7 |
6
|
eqeq2i |
|- ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) |
| 8 |
1
|
pjhcli |
|- ( u e. ~H -> ( ( projh ` A ) ` u ) e. ~H ) |
| 9 |
|
normcl |
|- ( ( ( projh ` A ) ` u ) e. ~H -> ( normh ` ( ( projh ` A ) ` u ) ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( u e. ~H -> ( normh ` ( ( projh ` A ) ` u ) ) e. RR ) |
| 11 |
|
normge0 |
|- ( ( ( projh ` A ) ` u ) e. ~H -> 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) |
| 12 |
8 11
|
syl |
|- ( u e. ~H -> 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
|
0le1 |
|- 0 <_ 1 |
| 15 |
|
sq11 |
|- ( ( ( ( normh ` ( ( projh ` A ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 16 |
13 14 15
|
mpanr12 |
|- ( ( ( normh ` ( ( projh ` A ) ` u ) ) e. RR /\ 0 <_ ( normh ` ( ( projh ` A ) ` u ) ) ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 17 |
10 12 16
|
syl2anc |
|- ( u e. ~H -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = ( 1 ^ 2 ) <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 18 |
7 17
|
bitr3id |
|- ( u e. ~H -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 19 |
18
|
adantr |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 <-> ( normh ` ( ( projh ` A ) ` u ) ) = 1 ) ) |
| 20 |
5 19
|
bitr4d |
|- ( ( u e. ~H /\ ( normh ` u ) = 1 ) -> ( u e. A <-> ( ( normh ` ( ( projh ` A ) ` u ) ) ^ 2 ) = 1 ) ) |