Step |
Hyp |
Ref |
Expression |
1 |
|
karatsuba.a |
|- A e. NN0 |
2 |
|
karatsuba.b |
|- B e. NN0 |
3 |
|
karatsuba.c |
|- C e. NN0 |
4 |
|
karatsuba.d |
|- D e. NN0 |
5 |
|
karatsuba.s |
|- S e. NN0 |
6 |
|
karatsuba.m |
|- M e. NN0 |
7 |
|
karatsuba.r |
|- ( A x. C ) = R |
8 |
|
karatsuba.t |
|- ( B x. D ) = T |
9 |
|
karatsuba.e |
|- ( ( A + B ) x. ( C + D ) ) = ( ( R + S ) + T ) |
10 |
|
karatsuba.x |
|- ( ( A x. ( ; 1 0 ^ M ) ) + B ) = X |
11 |
|
karatsuba.y |
|- ( ( C x. ( ; 1 0 ^ M ) ) + D ) = Y |
12 |
|
karatsuba.w |
|- ( ( R x. ( ; 1 0 ^ M ) ) + S ) = W |
13 |
|
karatsuba.z |
|- ( ( W x. ( ; 1 0 ^ M ) ) + T ) = Z |
14 |
1
|
nn0cni |
|- A e. CC |
15 |
|
10nn0 |
|- ; 1 0 e. NN0 |
16 |
15
|
nn0cni |
|- ; 1 0 e. CC |
17 |
|
expcl |
|- ( ( ; 1 0 e. CC /\ M e. NN0 ) -> ( ; 1 0 ^ M ) e. CC ) |
18 |
16 6 17
|
mp2an |
|- ( ; 1 0 ^ M ) e. CC |
19 |
14 18
|
mulcli |
|- ( A x. ( ; 1 0 ^ M ) ) e. CC |
20 |
2
|
nn0cni |
|- B e. CC |
21 |
3
|
nn0cni |
|- C e. CC |
22 |
21 18
|
mulcli |
|- ( C x. ( ; 1 0 ^ M ) ) e. CC |
23 |
4
|
nn0cni |
|- D e. CC |
24 |
19 20 22 23
|
muladdi |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) + B ) x. ( ( C x. ( ; 1 0 ^ M ) ) + D ) ) = ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( D x. B ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) |
25 |
19 22
|
mulcli |
|- ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) e. CC |
26 |
23 20
|
mulcli |
|- ( D x. B ) e. CC |
27 |
19 23
|
mulcli |
|- ( ( A x. ( ; 1 0 ^ M ) ) x. D ) e. CC |
28 |
22 20
|
mulcli |
|- ( ( C x. ( ; 1 0 ^ M ) ) x. B ) e. CC |
29 |
27 28
|
addcli |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) e. CC |
30 |
25 26 29
|
add32i |
|- ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( D x. B ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) = ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) + ( D x. B ) ) |
31 |
19 21
|
mulcli |
|- ( ( A x. ( ; 1 0 ^ M ) ) x. C ) e. CC |
32 |
5
|
nn0cni |
|- S e. CC |
33 |
31 32 18
|
adddiri |
|- ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) + S ) x. ( ; 1 0 ^ M ) ) = ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) x. ( ; 1 0 ^ M ) ) + ( S x. ( ; 1 0 ^ M ) ) ) |
34 |
14 18 21
|
mul32i |
|- ( ( A x. ( ; 1 0 ^ M ) ) x. C ) = ( ( A x. C ) x. ( ; 1 0 ^ M ) ) |
35 |
7
|
oveq1i |
|- ( ( A x. C ) x. ( ; 1 0 ^ M ) ) = ( R x. ( ; 1 0 ^ M ) ) |
36 |
34 35
|
eqtri |
|- ( ( A x. ( ; 1 0 ^ M ) ) x. C ) = ( R x. ( ; 1 0 ^ M ) ) |
37 |
36
|
oveq1i |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) + S ) = ( ( R x. ( ; 1 0 ^ M ) ) + S ) |
38 |
37 12
|
eqtri |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) + S ) = W |
39 |
38
|
oveq1i |
|- ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) + S ) x. ( ; 1 0 ^ M ) ) = ( W x. ( ; 1 0 ^ M ) ) |
40 |
19 21 18
|
mulassi |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) x. ( ; 1 0 ^ M ) ) = ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) |
41 |
14 21
|
mulcli |
|- ( A x. C ) e. CC |
42 |
41 26 32
|
add32i |
|- ( ( ( A x. C ) + ( D x. B ) ) + S ) = ( ( ( A x. C ) + S ) + ( D x. B ) ) |
43 |
7
|
oveq1i |
|- ( ( A x. C ) + S ) = ( R + S ) |
44 |
20 23 8
|
mulcomli |
|- ( D x. B ) = T |
45 |
43 44
|
oveq12i |
|- ( ( ( A x. C ) + S ) + ( D x. B ) ) = ( ( R + S ) + T ) |
46 |
42 45
|
eqtri |
|- ( ( ( A x. C ) + ( D x. B ) ) + S ) = ( ( R + S ) + T ) |
47 |
14 20 21 23
|
muladdi |
|- ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |
48 |
46 9 47
|
3eqtr2i |
|- ( ( ( A x. C ) + ( D x. B ) ) + S ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) |
49 |
41 26
|
addcli |
|- ( ( A x. C ) + ( D x. B ) ) e. CC |
50 |
14 23
|
mulcli |
|- ( A x. D ) e. CC |
51 |
21 20
|
mulcli |
|- ( C x. B ) e. CC |
52 |
50 51
|
addcli |
|- ( ( A x. D ) + ( C x. B ) ) e. CC |
53 |
49 32 52
|
addcani |
|- ( ( ( ( A x. C ) + ( D x. B ) ) + S ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) <-> S = ( ( A x. D ) + ( C x. B ) ) ) |
54 |
48 53
|
mpbi |
|- S = ( ( A x. D ) + ( C x. B ) ) |
55 |
54
|
oveq1i |
|- ( S x. ( ; 1 0 ^ M ) ) = ( ( ( A x. D ) + ( C x. B ) ) x. ( ; 1 0 ^ M ) ) |
56 |
50 51 18
|
adddiri |
|- ( ( ( A x. D ) + ( C x. B ) ) x. ( ; 1 0 ^ M ) ) = ( ( ( A x. D ) x. ( ; 1 0 ^ M ) ) + ( ( C x. B ) x. ( ; 1 0 ^ M ) ) ) |
57 |
14 23 18
|
mul32i |
|- ( ( A x. D ) x. ( ; 1 0 ^ M ) ) = ( ( A x. ( ; 1 0 ^ M ) ) x. D ) |
58 |
21 20 18
|
mul32i |
|- ( ( C x. B ) x. ( ; 1 0 ^ M ) ) = ( ( C x. ( ; 1 0 ^ M ) ) x. B ) |
59 |
57 58
|
oveq12i |
|- ( ( ( A x. D ) x. ( ; 1 0 ^ M ) ) + ( ( C x. B ) x. ( ; 1 0 ^ M ) ) ) = ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) |
60 |
55 56 59
|
3eqtri |
|- ( S x. ( ; 1 0 ^ M ) ) = ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) |
61 |
40 60
|
oveq12i |
|- ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. C ) x. ( ; 1 0 ^ M ) ) + ( S x. ( ; 1 0 ^ M ) ) ) = ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) |
62 |
33 39 61
|
3eqtr3ri |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) = ( W x. ( ; 1 0 ^ M ) ) |
63 |
62 44
|
oveq12i |
|- ( ( ( ( A x. ( ; 1 0 ^ M ) ) x. ( C x. ( ; 1 0 ^ M ) ) ) + ( ( ( A x. ( ; 1 0 ^ M ) ) x. D ) + ( ( C x. ( ; 1 0 ^ M ) ) x. B ) ) ) + ( D x. B ) ) = ( ( W x. ( ; 1 0 ^ M ) ) + T ) |
64 |
24 30 63
|
3eqtri |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) + B ) x. ( ( C x. ( ; 1 0 ^ M ) ) + D ) ) = ( ( W x. ( ; 1 0 ^ M ) ) + T ) |
65 |
10 11
|
oveq12i |
|- ( ( ( A x. ( ; 1 0 ^ M ) ) + B ) x. ( ( C x. ( ; 1 0 ^ M ) ) + D ) ) = ( X x. Y ) |
66 |
64 65 13
|
3eqtr3i |
|- ( X x. Y ) = Z |