Step |
Hyp |
Ref |
Expression |
1 |
|
karden.a |
|- A e. _V |
2 |
|
karden.c |
|- C = { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
3 |
|
karden.d |
|- D = { x | ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
4 |
|
breq1 |
|- ( w = A -> ( w ~~ A <-> A ~~ A ) ) |
5 |
1
|
enref |
|- A ~~ A |
6 |
1 4 5
|
ceqsexv2d |
|- E. w w ~~ A |
7 |
|
abn0 |
|- ( { w | w ~~ A } =/= (/) <-> E. w w ~~ A ) |
8 |
6 7
|
mpbir |
|- { w | w ~~ A } =/= (/) |
9 |
|
scott0 |
|- ( { w | w ~~ A } = (/) <-> { z e. { w | w ~~ A } | A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) } = (/) ) |
10 |
9
|
necon3bii |
|- ( { w | w ~~ A } =/= (/) <-> { z e. { w | w ~~ A } | A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) } =/= (/) ) |
11 |
8 10
|
mpbi |
|- { z e. { w | w ~~ A } | A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) } =/= (/) |
12 |
|
rabn0 |
|- ( { z e. { w | w ~~ A } | A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) } =/= (/) <-> E. z e. { w | w ~~ A } A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) ) |
13 |
11 12
|
mpbi |
|- E. z e. { w | w ~~ A } A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) |
14 |
|
vex |
|- z e. _V |
15 |
|
breq1 |
|- ( w = z -> ( w ~~ A <-> z ~~ A ) ) |
16 |
14 15
|
elab |
|- ( z e. { w | w ~~ A } <-> z ~~ A ) |
17 |
|
breq1 |
|- ( w = y -> ( w ~~ A <-> y ~~ A ) ) |
18 |
17
|
ralab |
|- ( A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) <-> A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) |
19 |
16 18
|
anbi12i |
|- ( ( z e. { w | w ~~ A } /\ A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) ) <-> ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) ) |
20 |
|
simpl |
|- ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) -> z ~~ A ) |
21 |
20
|
a1i |
|- ( C = D -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) -> z ~~ A ) ) |
22 |
2 3
|
eqeq12i |
|- ( C = D <-> { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } = { x | ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) } ) |
23 |
|
abbi |
|- ( A. x ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) <-> { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } = { x | ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) } ) |
24 |
22 23
|
bitr4i |
|- ( C = D <-> A. x ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) ) |
25 |
|
breq1 |
|- ( x = z -> ( x ~~ A <-> z ~~ A ) ) |
26 |
|
fveq2 |
|- ( x = z -> ( rank ` x ) = ( rank ` z ) ) |
27 |
26
|
sseq1d |
|- ( x = z -> ( ( rank ` x ) C_ ( rank ` y ) <-> ( rank ` z ) C_ ( rank ` y ) ) ) |
28 |
27
|
imbi2d |
|- ( x = z -> ( ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) <-> ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) ) |
29 |
28
|
albidv |
|- ( x = z -> ( A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) ) |
30 |
25 29
|
anbi12d |
|- ( x = z -> ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) ) ) |
31 |
|
breq1 |
|- ( x = z -> ( x ~~ B <-> z ~~ B ) ) |
32 |
27
|
imbi2d |
|- ( x = z -> ( ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) <-> ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) |
33 |
32
|
albidv |
|- ( x = z -> ( A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) |
34 |
31 33
|
anbi12d |
|- ( x = z -> ( ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( z ~~ B /\ A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) ) |
35 |
30 34
|
bibi12d |
|- ( x = z -> ( ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) <-> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) <-> ( z ~~ B /\ A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) ) ) |
36 |
35
|
spvv |
|- ( A. x ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) <-> ( z ~~ B /\ A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) ) |
37 |
24 36
|
sylbi |
|- ( C = D -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) <-> ( z ~~ B /\ A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) ) ) |
38 |
|
simpl |
|- ( ( z ~~ B /\ A. y ( y ~~ B -> ( rank ` z ) C_ ( rank ` y ) ) ) -> z ~~ B ) |
39 |
37 38
|
syl6bi |
|- ( C = D -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) -> z ~~ B ) ) |
40 |
21 39
|
jcad |
|- ( C = D -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) -> ( z ~~ A /\ z ~~ B ) ) ) |
41 |
|
ensym |
|- ( z ~~ A -> A ~~ z ) |
42 |
|
entr |
|- ( ( A ~~ z /\ z ~~ B ) -> A ~~ B ) |
43 |
41 42
|
sylan |
|- ( ( z ~~ A /\ z ~~ B ) -> A ~~ B ) |
44 |
40 43
|
syl6 |
|- ( C = D -> ( ( z ~~ A /\ A. y ( y ~~ A -> ( rank ` z ) C_ ( rank ` y ) ) ) -> A ~~ B ) ) |
45 |
19 44
|
syl5bi |
|- ( C = D -> ( ( z e. { w | w ~~ A } /\ A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) ) -> A ~~ B ) ) |
46 |
45
|
expd |
|- ( C = D -> ( z e. { w | w ~~ A } -> ( A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) -> A ~~ B ) ) ) |
47 |
46
|
rexlimdv |
|- ( C = D -> ( E. z e. { w | w ~~ A } A. y e. { w | w ~~ A } ( rank ` z ) C_ ( rank ` y ) -> A ~~ B ) ) |
48 |
13 47
|
mpi |
|- ( C = D -> A ~~ B ) |
49 |
|
enen2 |
|- ( A ~~ B -> ( x ~~ A <-> x ~~ B ) ) |
50 |
|
enen2 |
|- ( A ~~ B -> ( y ~~ A <-> y ~~ B ) ) |
51 |
50
|
imbi1d |
|- ( A ~~ B -> ( ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) <-> ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) |
52 |
51
|
albidv |
|- ( A ~~ B -> ( A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) <-> A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) |
53 |
49 52
|
anbi12d |
|- ( A ~~ B -> ( ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) <-> ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) ) ) |
54 |
53
|
abbidv |
|- ( A ~~ B -> { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } = { x | ( x ~~ B /\ A. y ( y ~~ B -> ( rank ` x ) C_ ( rank ` y ) ) ) } ) |
55 |
54 2 3
|
3eqtr4g |
|- ( A ~~ B -> C = D ) |
56 |
48 55
|
impbii |
|- ( C = D <-> A ~~ B ) |