Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
|- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } = { x | ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) } |
2 |
|
vex |
|- x e. _V |
3 |
|
breq1 |
|- ( z = x -> ( z ~~ A <-> x ~~ A ) ) |
4 |
2 3
|
elab |
|- ( x e. { z | z ~~ A } <-> x ~~ A ) |
5 |
|
breq1 |
|- ( z = y -> ( z ~~ A <-> y ~~ A ) ) |
6 |
5
|
ralab |
|- ( A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) <-> A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) |
7 |
4 6
|
anbi12i |
|- ( ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) <-> ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) ) |
8 |
7
|
abbii |
|- { x | ( x e. { z | z ~~ A } /\ A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) ) } = { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
9 |
1 8
|
eqtri |
|- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } = { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } |
10 |
|
scottex |
|- { x e. { z | z ~~ A } | A. y e. { z | z ~~ A } ( rank ` x ) C_ ( rank ` y ) } e. _V |
11 |
9 10
|
eqeltrri |
|- { x | ( x ~~ A /\ A. y ( y ~~ A -> ( rank ` x ) C_ ( rank ` y ) ) ) } e. _V |