| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bracl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` B ) e. CC ) | 
						
							| 3 |  | brafn |  |-  ( C e. ~H -> ( bra ` C ) : ~H --> CC ) | 
						
							| 4 | 3 | ad2antrl |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` C ) : ~H --> CC ) | 
						
							| 5 |  | simprr |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> D e. ~H ) | 
						
							| 6 |  | hfmval |  |-  ( ( ( ( bra ` A ) ` B ) e. CC /\ ( bra ` C ) : ~H --> CC /\ D e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) | 
						
							| 7 | 2 4 5 6 | syl3anc |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) ) |