Step |
Hyp |
Ref |
Expression |
1 |
|
bracl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
2 |
1
|
adantr |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` B ) e. CC ) |
3 |
|
brafn |
|- ( C e. ~H -> ( bra ` C ) : ~H --> CC ) |
4 |
3
|
ad2antrl |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` C ) : ~H --> CC ) |
5 |
|
simprr |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> D e. ~H ) |
6 |
|
hfmval |
|- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( bra ` C ) : ~H --> CC /\ D e. ~H ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) |
7 |
2 4 5 6
|
syl3anc |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) = ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) ) |
8 |
7
|
eqcomd |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( ( bra ` A ) ` B ) .fn ( bra ` C ) ) ` D ) ) |