| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bracl |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) | 
						
							| 2 |  | bracl |  |-  ( ( C e. ~H /\ D e. ~H ) -> ( ( bra ` C ) ` D ) e. CC ) | 
						
							| 3 |  | mulcom |  |-  ( ( ( ( bra ` A ) ` B ) e. CC /\ ( ( bra ` C ) ` D ) e. CC ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) | 
						
							| 5 |  | bralnfn |  |-  ( A e. ~H -> ( bra ` A ) e. LinFn ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` A ) e. LinFn ) | 
						
							| 7 | 2 | adantl |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` C ) ` D ) e. CC ) | 
						
							| 8 |  | simplr |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> B e. ~H ) | 
						
							| 9 |  | lnfnmul |  |-  ( ( ( bra ` A ) e. LinFn /\ ( ( bra ` C ) ` D ) e. CC /\ B e. ~H ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) | 
						
							| 11 | 4 10 | eqtr4d |  |-  ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) ) |