Step |
Hyp |
Ref |
Expression |
1 |
|
bracl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( bra ` A ) ` B ) e. CC ) |
2 |
|
bracl |
|- ( ( C e. ~H /\ D e. ~H ) -> ( ( bra ` C ) ` D ) e. CC ) |
3 |
|
mulcom |
|- ( ( ( ( bra ` A ) ` B ) e. CC /\ ( ( bra ` C ) ` D ) e. CC ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
5 |
|
bralnfn |
|- ( A e. ~H -> ( bra ` A ) e. LinFn ) |
6 |
5
|
ad2antrr |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( bra ` A ) e. LinFn ) |
7 |
2
|
adantl |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` C ) ` D ) e. CC ) |
8 |
|
simplr |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> B e. ~H ) |
9 |
|
lnfnmul |
|- ( ( ( bra ` A ) e. LinFn /\ ( ( bra ` C ) ` D ) e. CC /\ B e. ~H ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) = ( ( ( bra ` C ) ` D ) x. ( ( bra ` A ) ` B ) ) ) |
11 |
4 10
|
eqtr4d |
|- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( bra ` A ) ` B ) x. ( ( bra ` C ) ` D ) ) = ( ( bra ` A ) ` ( ( ( bra ` C ) ` D ) .h B ) ) ) |