Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( y = A -> ( ( x .ih z ) .h y ) = ( ( x .ih z ) .h A ) ) |
2 |
1
|
mpteq2dv |
|- ( y = A -> ( x e. ~H |-> ( ( x .ih z ) .h y ) ) = ( x e. ~H |-> ( ( x .ih z ) .h A ) ) ) |
3 |
|
oveq2 |
|- ( z = B -> ( x .ih z ) = ( x .ih B ) ) |
4 |
3
|
oveq1d |
|- ( z = B -> ( ( x .ih z ) .h A ) = ( ( x .ih B ) .h A ) ) |
5 |
4
|
mpteq2dv |
|- ( z = B -> ( x e. ~H |-> ( ( x .ih z ) .h A ) ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |
6 |
|
df-kb |
|- ketbra = ( y e. ~H , z e. ~H |-> ( x e. ~H |-> ( ( x .ih z ) .h y ) ) ) |
7 |
|
ax-hilex |
|- ~H e. _V |
8 |
7
|
mptex |
|- ( x e. ~H |-> ( ( x .ih B ) .h A ) ) e. _V |
9 |
2 5 6 8
|
ovmpo |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A ketbra B ) = ( x e. ~H |-> ( ( x .ih B ) .h A ) ) ) |