Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( ( normh ` A ) = 1 -> ( ( normh ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
2 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
3 |
1 2
|
eqtrdi |
|- ( ( normh ` A ) = 1 -> ( ( normh ` A ) ^ 2 ) = 1 ) |
4 |
3
|
oveq2d |
|- ( ( normh ` A ) = 1 -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( ( x .ih A ) / 1 ) ) |
5 |
|
hicl |
|- ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC ) |
6 |
5
|
ancoms |
|- ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC ) |
7 |
6
|
div1d |
|- ( ( A e. ~H /\ x e. ~H ) -> ( ( x .ih A ) / 1 ) = ( x .ih A ) ) |
8 |
4 7
|
sylan9eqr |
|- ( ( ( A e. ~H /\ x e. ~H ) /\ ( normh ` A ) = 1 ) -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( x .ih A ) ) |
9 |
8
|
an32s |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( x .ih A ) ) |
10 |
9
|
oveq1d |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( ( x .ih A ) .h A ) ) |
11 |
|
simpll |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> A e. ~H ) |
12 |
|
simpr |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> x e. ~H ) |
13 |
|
ax-1ne0 |
|- 1 =/= 0 |
14 |
|
neeq1 |
|- ( ( normh ` A ) = 1 -> ( ( normh ` A ) =/= 0 <-> 1 =/= 0 ) ) |
15 |
13 14
|
mpbiri |
|- ( ( normh ` A ) = 1 -> ( normh ` A ) =/= 0 ) |
16 |
|
normne0 |
|- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
17 |
15 16
|
syl5ib |
|- ( A e. ~H -> ( ( normh ` A ) = 1 -> A =/= 0h ) ) |
18 |
17
|
imp |
|- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> A =/= 0h ) |
19 |
18
|
adantr |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> A =/= 0h ) |
20 |
|
pjspansn |
|- ( ( A e. ~H /\ x e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` x ) = ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
21 |
11 12 19 20
|
syl3anc |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( projh ` ( span ` { A } ) ) ` x ) = ( ( ( x .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
22 |
|
kbval |
|- ( ( A e. ~H /\ A e. ~H /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
23 |
22
|
3anidm12 |
|- ( ( A e. ~H /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
24 |
23
|
adantlr |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( x .ih A ) .h A ) ) |
25 |
10 21 24
|
3eqtr4rd |
|- ( ( ( A e. ~H /\ ( normh ` A ) = 1 ) /\ x e. ~H ) -> ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) |
26 |
25
|
ralrimiva |
|- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) |
27 |
|
kbop |
|- ( ( A e. ~H /\ A e. ~H ) -> ( A ketbra A ) : ~H --> ~H ) |
28 |
27
|
anidms |
|- ( A e. ~H -> ( A ketbra A ) : ~H --> ~H ) |
29 |
28
|
ffnd |
|- ( A e. ~H -> ( A ketbra A ) Fn ~H ) |
30 |
|
spansnch |
|- ( A e. ~H -> ( span ` { A } ) e. CH ) |
31 |
|
pjfn |
|- ( ( span ` { A } ) e. CH -> ( projh ` ( span ` { A } ) ) Fn ~H ) |
32 |
30 31
|
syl |
|- ( A e. ~H -> ( projh ` ( span ` { A } ) ) Fn ~H ) |
33 |
|
eqfnfv |
|- ( ( ( A ketbra A ) Fn ~H /\ ( projh ` ( span ` { A } ) ) Fn ~H ) -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
34 |
29 32 33
|
syl2anc |
|- ( A e. ~H -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
35 |
34
|
adantr |
|- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> ( ( A ketbra A ) = ( projh ` ( span ` { A } ) ) <-> A. x e. ~H ( ( A ketbra A ) ` x ) = ( ( projh ` ( span ` { A } ) ) ` x ) ) ) |
36 |
26 35
|
mpbird |
|- ( ( A e. ~H /\ ( normh ` A ) = 1 ) -> ( A ketbra A ) = ( projh ` ( span ` { A } ) ) ) |