Metamath Proof Explorer


Theorem keephyp3v

Description: Keep a hypothesis containing 3 class variables. (Contributed by NM, 27-Sep-1999)

Ref Expression
Hypotheses keephyp3v.1
|- ( A = if ( ph , A , D ) -> ( rh <-> ch ) )
keephyp3v.2
|- ( B = if ( ph , B , R ) -> ( ch <-> th ) )
keephyp3v.3
|- ( C = if ( ph , C , S ) -> ( th <-> ta ) )
keephyp3v.4
|- ( D = if ( ph , A , D ) -> ( et <-> ze ) )
keephyp3v.5
|- ( R = if ( ph , B , R ) -> ( ze <-> si ) )
keephyp3v.6
|- ( S = if ( ph , C , S ) -> ( si <-> ta ) )
keephyp3v.7
|- rh
keephyp3v.8
|- et
Assertion keephyp3v
|- ta

Proof

Step Hyp Ref Expression
1 keephyp3v.1
 |-  ( A = if ( ph , A , D ) -> ( rh <-> ch ) )
2 keephyp3v.2
 |-  ( B = if ( ph , B , R ) -> ( ch <-> th ) )
3 keephyp3v.3
 |-  ( C = if ( ph , C , S ) -> ( th <-> ta ) )
4 keephyp3v.4
 |-  ( D = if ( ph , A , D ) -> ( et <-> ze ) )
5 keephyp3v.5
 |-  ( R = if ( ph , B , R ) -> ( ze <-> si ) )
6 keephyp3v.6
 |-  ( S = if ( ph , C , S ) -> ( si <-> ta ) )
7 keephyp3v.7
 |-  rh
8 keephyp3v.8
 |-  et
9 iftrue
 |-  ( ph -> if ( ph , A , D ) = A )
10 9 eqcomd
 |-  ( ph -> A = if ( ph , A , D ) )
11 10 1 syl
 |-  ( ph -> ( rh <-> ch ) )
12 iftrue
 |-  ( ph -> if ( ph , B , R ) = B )
13 12 eqcomd
 |-  ( ph -> B = if ( ph , B , R ) )
14 13 2 syl
 |-  ( ph -> ( ch <-> th ) )
15 iftrue
 |-  ( ph -> if ( ph , C , S ) = C )
16 15 eqcomd
 |-  ( ph -> C = if ( ph , C , S ) )
17 16 3 syl
 |-  ( ph -> ( th <-> ta ) )
18 11 14 17 3bitrd
 |-  ( ph -> ( rh <-> ta ) )
19 7 18 mpbii
 |-  ( ph -> ta )
20 iffalse
 |-  ( -. ph -> if ( ph , A , D ) = D )
21 20 eqcomd
 |-  ( -. ph -> D = if ( ph , A , D ) )
22 21 4 syl
 |-  ( -. ph -> ( et <-> ze ) )
23 iffalse
 |-  ( -. ph -> if ( ph , B , R ) = R )
24 23 eqcomd
 |-  ( -. ph -> R = if ( ph , B , R ) )
25 24 5 syl
 |-  ( -. ph -> ( ze <-> si ) )
26 iffalse
 |-  ( -. ph -> if ( ph , C , S ) = S )
27 26 eqcomd
 |-  ( -. ph -> S = if ( ph , C , S ) )
28 27 6 syl
 |-  ( -. ph -> ( si <-> ta ) )
29 22 25 28 3bitrd
 |-  ( -. ph -> ( et <-> ta ) )
30 8 29 mpbii
 |-  ( -. ph -> ta )
31 19 30 pm2.61i
 |-  ta