Step |
Hyp |
Ref |
Expression |
1 |
|
kercvrlsm.u |
|- U = ( LSubSp ` S ) |
2 |
|
kercvrlsm.p |
|- .(+) = ( LSSum ` S ) |
3 |
|
kercvrlsm.z |
|- .0. = ( 0g ` T ) |
4 |
|
kercvrlsm.k |
|- K = ( `' F " { .0. } ) |
5 |
|
kercvrlsm.b |
|- B = ( Base ` S ) |
6 |
|
kercvrlsm.f |
|- ( ph -> F e. ( S LMHom T ) ) |
7 |
|
kercvrlsm.d |
|- ( ph -> D e. U ) |
8 |
|
kercvrlsm.cv |
|- ( ph -> ( F " D ) = ran F ) |
9 |
|
lmhmlmod1 |
|- ( F e. ( S LMHom T ) -> S e. LMod ) |
10 |
6 9
|
syl |
|- ( ph -> S e. LMod ) |
11 |
4 3 1
|
lmhmkerlss |
|- ( F e. ( S LMHom T ) -> K e. U ) |
12 |
6 11
|
syl |
|- ( ph -> K e. U ) |
13 |
1 2
|
lsmcl |
|- ( ( S e. LMod /\ K e. U /\ D e. U ) -> ( K .(+) D ) e. U ) |
14 |
10 12 7 13
|
syl3anc |
|- ( ph -> ( K .(+) D ) e. U ) |
15 |
5 1
|
lssss |
|- ( ( K .(+) D ) e. U -> ( K .(+) D ) C_ B ) |
16 |
14 15
|
syl |
|- ( ph -> ( K .(+) D ) C_ B ) |
17 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
18 |
5 17
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : B --> ( Base ` T ) ) |
19 |
6 18
|
syl |
|- ( ph -> F : B --> ( Base ` T ) ) |
20 |
19
|
ffnd |
|- ( ph -> F Fn B ) |
21 |
|
fnfvelrn |
|- ( ( F Fn B /\ a e. B ) -> ( F ` a ) e. ran F ) |
22 |
20 21
|
sylan |
|- ( ( ph /\ a e. B ) -> ( F ` a ) e. ran F ) |
23 |
8
|
adantr |
|- ( ( ph /\ a e. B ) -> ( F " D ) = ran F ) |
24 |
22 23
|
eleqtrrd |
|- ( ( ph /\ a e. B ) -> ( F ` a ) e. ( F " D ) ) |
25 |
20
|
adantr |
|- ( ( ph /\ a e. B ) -> F Fn B ) |
26 |
5 1
|
lssss |
|- ( D e. U -> D C_ B ) |
27 |
7 26
|
syl |
|- ( ph -> D C_ B ) |
28 |
27
|
adantr |
|- ( ( ph /\ a e. B ) -> D C_ B ) |
29 |
|
fvelimab |
|- ( ( F Fn B /\ D C_ B ) -> ( ( F ` a ) e. ( F " D ) <-> E. b e. D ( F ` b ) = ( F ` a ) ) ) |
30 |
25 28 29
|
syl2anc |
|- ( ( ph /\ a e. B ) -> ( ( F ` a ) e. ( F " D ) <-> E. b e. D ( F ` b ) = ( F ` a ) ) ) |
31 |
24 30
|
mpbid |
|- ( ( ph /\ a e. B ) -> E. b e. D ( F ` b ) = ( F ` a ) ) |
32 |
|
lmodgrp |
|- ( S e. LMod -> S e. Grp ) |
33 |
10 32
|
syl |
|- ( ph -> S e. Grp ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> S e. Grp ) |
35 |
|
simprl |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> a e. B ) |
36 |
27
|
sselda |
|- ( ( ph /\ b e. D ) -> b e. B ) |
37 |
36
|
adantrl |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> b e. B ) |
38 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
39 |
|
eqid |
|- ( -g ` S ) = ( -g ` S ) |
40 |
5 38 39
|
grpnpcan |
|- ( ( S e. Grp /\ a e. B /\ b e. B ) -> ( ( a ( -g ` S ) b ) ( +g ` S ) b ) = a ) |
41 |
34 35 37 40
|
syl3anc |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> ( ( a ( -g ` S ) b ) ( +g ` S ) b ) = a ) |
42 |
41
|
adantr |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( ( a ( -g ` S ) b ) ( +g ` S ) b ) = a ) |
43 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> S e. LMod ) |
44 |
5 1
|
lssss |
|- ( K e. U -> K C_ B ) |
45 |
12 44
|
syl |
|- ( ph -> K C_ B ) |
46 |
45
|
ad2antrr |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> K C_ B ) |
47 |
27
|
ad2antrr |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> D C_ B ) |
48 |
|
eqcom |
|- ( ( F ` b ) = ( F ` a ) <-> ( F ` a ) = ( F ` b ) ) |
49 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
50 |
6 49
|
syl |
|- ( ph -> F e. ( S GrpHom T ) ) |
51 |
50
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> F e. ( S GrpHom T ) ) |
52 |
5 3 4 39
|
ghmeqker |
|- ( ( F e. ( S GrpHom T ) /\ a e. B /\ b e. B ) -> ( ( F ` a ) = ( F ` b ) <-> ( a ( -g ` S ) b ) e. K ) ) |
53 |
51 35 37 52
|
syl3anc |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> ( ( F ` a ) = ( F ` b ) <-> ( a ( -g ` S ) b ) e. K ) ) |
54 |
48 53
|
syl5bb |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> ( ( F ` b ) = ( F ` a ) <-> ( a ( -g ` S ) b ) e. K ) ) |
55 |
54
|
biimpa |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( a ( -g ` S ) b ) e. K ) |
56 |
|
simplrr |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> b e. D ) |
57 |
5 38 2
|
lsmelvalix |
|- ( ( ( S e. LMod /\ K C_ B /\ D C_ B ) /\ ( ( a ( -g ` S ) b ) e. K /\ b e. D ) ) -> ( ( a ( -g ` S ) b ) ( +g ` S ) b ) e. ( K .(+) D ) ) |
58 |
43 46 47 55 56 57
|
syl32anc |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( ( a ( -g ` S ) b ) ( +g ` S ) b ) e. ( K .(+) D ) ) |
59 |
42 58
|
eqeltrrd |
|- ( ( ( ph /\ ( a e. B /\ b e. D ) ) /\ ( F ` b ) = ( F ` a ) ) -> a e. ( K .(+) D ) ) |
60 |
59
|
ex |
|- ( ( ph /\ ( a e. B /\ b e. D ) ) -> ( ( F ` b ) = ( F ` a ) -> a e. ( K .(+) D ) ) ) |
61 |
60
|
anassrs |
|- ( ( ( ph /\ a e. B ) /\ b e. D ) -> ( ( F ` b ) = ( F ` a ) -> a e. ( K .(+) D ) ) ) |
62 |
61
|
rexlimdva |
|- ( ( ph /\ a e. B ) -> ( E. b e. D ( F ` b ) = ( F ` a ) -> a e. ( K .(+) D ) ) ) |
63 |
31 62
|
mpd |
|- ( ( ph /\ a e. B ) -> a e. ( K .(+) D ) ) |
64 |
16 63
|
eqelssd |
|- ( ph -> ( K .(+) D ) = B ) |