| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ghm0to0.a |
|- A = ( Base ` R ) |
| 2 |
|
f1ghm0to0.b |
|- B = ( Base ` S ) |
| 3 |
|
f1ghm0to0.n |
|- N = ( 0g ` R ) |
| 4 |
|
f1ghm0to0.0 |
|- .0. = ( 0g ` S ) |
| 5 |
|
simpl |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) ) |
| 6 |
|
f1fn |
|- ( F : A -1-1-> B -> F Fn A ) |
| 7 |
6
|
adantl |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> F Fn A ) |
| 8 |
|
elpreima |
|- ( F Fn A -> ( x e. ( `' F " { .0. } ) <-> ( x e. A /\ ( F ` x ) e. { .0. } ) ) ) |
| 9 |
7 8
|
syl |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. A /\ ( F ` x ) e. { .0. } ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( x e. A /\ ( F ` x ) e. { .0. } ) ) |
| 11 |
10
|
simpld |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> x e. A ) |
| 12 |
10
|
simprd |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F ` x ) e. { .0. } ) |
| 13 |
|
fvex |
|- ( F ` x ) e. _V |
| 14 |
13
|
elsn |
|- ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) |
| 15 |
12 14
|
sylib |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> ( F ` x ) = .0. ) |
| 16 |
1 2 3 4
|
f1ghm0to0 |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. <-> x = N ) ) |
| 17 |
16
|
biimpd |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 18 |
17
|
3expa |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) -> ( ( F ` x ) = .0. -> x = N ) ) |
| 19 |
18
|
imp |
|- ( ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. A ) /\ ( F ` x ) = .0. ) -> x = N ) |
| 20 |
5 11 15 19
|
syl21anc |
|- ( ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) /\ x e. ( `' F " { .0. } ) ) -> x = N ) |
| 21 |
20
|
ex |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) -> x = N ) ) |
| 22 |
|
velsn |
|- ( x e. { N } <-> x = N ) |
| 23 |
21 22
|
imbitrrdi |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( x e. ( `' F " { .0. } ) -> x e. { N } ) ) |
| 24 |
23
|
ssrdv |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( `' F " { .0. } ) C_ { N } ) |
| 25 |
|
ghmgrp1 |
|- ( F e. ( R GrpHom S ) -> R e. Grp ) |
| 26 |
1 3
|
grpidcl |
|- ( R e. Grp -> N e. A ) |
| 27 |
25 26
|
syl |
|- ( F e. ( R GrpHom S ) -> N e. A ) |
| 28 |
3 4
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` N ) = .0. ) |
| 29 |
|
fvex |
|- ( F ` N ) e. _V |
| 30 |
29
|
elsn |
|- ( ( F ` N ) e. { .0. } <-> ( F ` N ) = .0. ) |
| 31 |
28 30
|
sylibr |
|- ( F e. ( R GrpHom S ) -> ( F ` N ) e. { .0. } ) |
| 32 |
1 2
|
ghmf |
|- ( F e. ( R GrpHom S ) -> F : A --> B ) |
| 33 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 34 |
|
elpreima |
|- ( F Fn A -> ( N e. ( `' F " { .0. } ) <-> ( N e. A /\ ( F ` N ) e. { .0. } ) ) ) |
| 35 |
32 33 34
|
3syl |
|- ( F e. ( R GrpHom S ) -> ( N e. ( `' F " { .0. } ) <-> ( N e. A /\ ( F ` N ) e. { .0. } ) ) ) |
| 36 |
27 31 35
|
mpbir2and |
|- ( F e. ( R GrpHom S ) -> N e. ( `' F " { .0. } ) ) |
| 37 |
36
|
snssd |
|- ( F e. ( R GrpHom S ) -> { N } C_ ( `' F " { .0. } ) ) |
| 38 |
37
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> { N } C_ ( `' F " { .0. } ) ) |
| 39 |
24 38
|
eqssd |
|- ( ( F e. ( R GrpHom S ) /\ F : A -1-1-> B ) -> ( `' F " { .0. } ) = { N } ) |
| 40 |
32
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> F : A --> B ) |
| 41 |
|
simpl |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> F e. ( R GrpHom S ) ) |
| 42 |
|
simpr2l |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x e. A ) |
| 43 |
|
simpr2r |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> y e. A ) |
| 44 |
|
simpr3 |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( F ` x ) = ( F ` y ) ) |
| 45 |
|
eqid |
|- ( `' F " { .0. } ) = ( `' F " { .0. } ) |
| 46 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
| 47 |
1 4 45 46
|
ghmeqker |
|- ( ( F e. ( R GrpHom S ) /\ x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) <-> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) ) |
| 48 |
47
|
biimpa |
|- ( ( ( F e. ( R GrpHom S ) /\ x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) -> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) |
| 49 |
41 42 43 44 48
|
syl31anc |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) e. ( `' F " { .0. } ) ) |
| 50 |
|
simpr1 |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( `' F " { .0. } ) = { N } ) |
| 51 |
49 50
|
eleqtrd |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) e. { N } ) |
| 52 |
|
ovex |
|- ( x ( -g ` R ) y ) e. _V |
| 53 |
52
|
elsn |
|- ( ( x ( -g ` R ) y ) e. { N } <-> ( x ( -g ` R ) y ) = N ) |
| 54 |
51 53
|
sylib |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( x ( -g ` R ) y ) = N ) |
| 55 |
25
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> R e. Grp ) |
| 56 |
1 3 46
|
grpsubeq0 |
|- ( ( R e. Grp /\ x e. A /\ y e. A ) -> ( ( x ( -g ` R ) y ) = N <-> x = y ) ) |
| 57 |
55 42 43 56
|
syl3anc |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> ( ( x ( -g ` R ) y ) = N <-> x = y ) ) |
| 58 |
54 57
|
mpbid |
|- ( ( F e. ( R GrpHom S ) /\ ( ( `' F " { .0. } ) = { N } /\ ( x e. A /\ y e. A ) /\ ( F ` x ) = ( F ` y ) ) ) -> x = y ) |
| 59 |
58
|
3anassrs |
|- ( ( ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) /\ ( x e. A /\ y e. A ) ) /\ ( F ` x ) = ( F ` y ) ) -> x = y ) |
| 60 |
59
|
ex |
|- ( ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 61 |
60
|
ralrimivva |
|- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 62 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 63 |
40 61 62
|
sylanbrc |
|- ( ( F e. ( R GrpHom S ) /\ ( `' F " { .0. } ) = { N } ) -> F : A -1-1-> B ) |
| 64 |
39 63
|
impbida |
|- ( F e. ( R GrpHom S ) -> ( F : A -1-1-> B <-> ( `' F " { .0. } ) = { N } ) ) |