Metamath Proof Explorer


Theorem kgenuni

Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis kgenuni.1
|- X = U. J
Assertion kgenuni
|- ( J e. Top -> X = U. ( kGen ` J ) )

Proof

Step Hyp Ref Expression
1 kgenuni.1
 |-  X = U. J
2 1 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` X ) )
3 kgentopon
 |-  ( J e. ( TopOn ` X ) -> ( kGen ` J ) e. ( TopOn ` X ) )
4 2 3 sylbi
 |-  ( J e. Top -> ( kGen ` J ) e. ( TopOn ` X ) )
5 toponuni
 |-  ( ( kGen ` J ) e. ( TopOn ` X ) -> X = U. ( kGen ` J ) )
6 4 5 syl
 |-  ( J e. Top -> X = U. ( kGen ` J ) )