Description: The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kgenuni.1 | |- X = U. J |
|
| Assertion | kgenuni | |- ( J e. Top -> X = U. ( kGen ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenuni.1 | |- X = U. J |
|
| 2 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 3 | kgentopon | |- ( J e. ( TopOn ` X ) -> ( kGen ` J ) e. ( TopOn ` X ) ) |
|
| 4 | 2 3 | sylbi | |- ( J e. Top -> ( kGen ` J ) e. ( TopOn ` X ) ) |
| 5 | toponuni | |- ( ( kGen ` J ) e. ( TopOn ` X ) -> X = U. ( kGen ` J ) ) |
|
| 6 | 4 5 | syl | |- ( J e. Top -> X = U. ( kGen ` J ) ) |