Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem10.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppcnlem10.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppcnlem10.n |
|- ( ph -> N e. NN ) |
4 |
|
knoppcnlem10.1 |
|- ( ph -> C e. RR ) |
5 |
|
knoppcnlem10.2 |
|- ( ph -> M e. NN0 ) |
6 |
|
simpr |
|- ( ( ph /\ z e. RR ) -> z e. RR ) |
7 |
5
|
adantr |
|- ( ( ph /\ z e. RR ) -> M e. NN0 ) |
8 |
2 6 7
|
knoppcnlem1 |
|- ( ( ph /\ z e. RR ) -> ( ( F ` z ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) ) |
9 |
8
|
mpteq2dva |
|- ( ph -> ( z e. RR |-> ( ( F ` z ) ` M ) ) = ( z e. RR |-> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) ) ) |
10 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
11 |
10
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
12 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
13 |
12
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
14 |
13
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
15 |
4
|
recnd |
|- ( ph -> C e. CC ) |
16 |
15 5
|
expcld |
|- ( ph -> ( C ^ M ) e. CC ) |
17 |
11 14 16
|
cnmptc |
|- ( ph -> ( z e. RR |-> ( C ^ M ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
18 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
19 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
20 |
18 19
|
mulcld |
|- ( ph -> ( 2 x. N ) e. CC ) |
21 |
20 5
|
expcld |
|- ( ph -> ( ( 2 x. N ) ^ M ) e. CC ) |
22 |
11 14 21
|
cnmptc |
|- ( ph -> ( z e. RR |-> ( ( 2 x. N ) ^ M ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
23 |
12
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
24 |
23
|
oveq2i |
|- ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) = ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
25 |
12
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
26 |
|
cnrest2r |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
27 |
25 26
|
ax-mp |
|- ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) C_ ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
28 |
24 27
|
eqsstri |
|- ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) C_ ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
29 |
11
|
cnmptid |
|- ( ph -> ( z e. RR |-> z ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
30 |
28 29
|
sselid |
|- ( ph -> ( z e. RR |-> z ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
31 |
12
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
32 |
31
|
a1i |
|- ( ph -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
33 |
|
oveq12 |
|- ( ( u = ( ( 2 x. N ) ^ M ) /\ v = z ) -> ( u x. v ) = ( ( ( 2 x. N ) ^ M ) x. z ) ) |
34 |
11 22 30 14 14 32 33
|
cnmpt12 |
|- ( ph -> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
35 |
|
2re |
|- 2 e. RR |
36 |
35
|
a1i |
|- ( ph -> 2 e. RR ) |
37 |
3
|
nnred |
|- ( ph -> N e. RR ) |
38 |
36 37
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
39 |
38 5
|
reexpcld |
|- ( ph -> ( ( 2 x. N ) ^ M ) e. RR ) |
40 |
39
|
adantr |
|- ( ( ph /\ z e. RR ) -> ( ( 2 x. N ) ^ M ) e. RR ) |
41 |
40 6
|
remulcld |
|- ( ( ph /\ z e. RR ) -> ( ( ( 2 x. N ) ^ M ) x. z ) e. RR ) |
42 |
41
|
fmpttd |
|- ( ph -> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) : RR --> RR ) |
43 |
42
|
frnd |
|- ( ph -> ran ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) C_ RR ) |
44 |
|
ax-resscn |
|- RR C_ CC |
45 |
44
|
a1i |
|- ( ph -> RR C_ CC ) |
46 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) C_ RR /\ RR C_ CC ) -> ( ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) <-> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
47 |
13 43 45 46
|
mp3an2i |
|- ( ph -> ( ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) <-> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
48 |
34 47
|
mpbid |
|- ( ph -> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
49 |
48 24
|
eleqtrrdi |
|- ( ph -> ( z e. RR |-> ( ( ( 2 x. N ) ^ M ) x. z ) ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
50 |
|
ssid |
|- CC C_ CC |
51 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) |
52 |
44 50 51
|
mp2an |
|- ( RR -cn-> RR ) C_ ( RR -cn-> CC ) |
53 |
1
|
dnicn |
|- T e. ( RR -cn-> RR ) |
54 |
53
|
a1i |
|- ( ph -> T e. ( RR -cn-> RR ) ) |
55 |
52 54
|
sselid |
|- ( ph -> T e. ( RR -cn-> CC ) ) |
56 |
13
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
57 |
12 23 56
|
cncfcn |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
58 |
44 50 57
|
mp2an |
|- ( RR -cn-> CC ) = ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) |
59 |
55 58
|
eleqtrdi |
|- ( ph -> T e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
60 |
11 49 59
|
cnmpt11f |
|- ( ph -> ( z e. RR |-> ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
61 |
|
oveq12 |
|- ( ( u = ( C ^ M ) /\ v = ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) -> ( u x. v ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) ) |
62 |
11 17 60 14 14 32 61
|
cnmpt12 |
|- ( ph -> ( z e. RR |-> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. z ) ) ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |
63 |
9 62
|
eqeltrd |
|- ( ph -> ( z e. RR |-> ( ( F ` z ) ` M ) ) e. ( ( topGen ` ran (,) ) Cn ( TopOpen ` CCfld ) ) ) |