| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v |  |-  V = ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e |  |-  E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> | 
						
							| 3 |  | konigsberg.g |  |-  G = <. V , E >. | 
						
							| 4 | 1 2 3 | konigsberglem5 |  |-  2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) | 
						
							| 5 |  | elpri |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 \/ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 ) ) | 
						
							| 6 |  | 2pos |  |-  0 < 2 | 
						
							| 7 |  | 0re |  |-  0 e. RR | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 7 8 | ltnsymi |  |-  ( 0 < 2 -> -. 2 < 0 ) | 
						
							| 10 | 6 9 | ax-mp |  |-  -. 2 < 0 | 
						
							| 11 |  | breq2 |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 2 < 0 ) ) | 
						
							| 12 | 10 11 | mtbiri |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 13 | 8 | ltnri |  |-  -. 2 < 2 | 
						
							| 14 |  | breq2 |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 2 < 2 ) ) | 
						
							| 15 | 13 14 | mtbiri |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 16 | 12 15 | jaoi |  |-  ( ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 \/ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 ) -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 17 | 5 16 | syl |  |-  ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) | 
						
							| 18 | 4 17 | mt2 |  |-  -. ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } | 
						
							| 19 | 1 2 3 | konigsbergumgr |  |-  G e. UMGraph | 
						
							| 20 |  | umgrupgr |  |-  ( G e. UMGraph -> G e. UPGraph ) | 
						
							| 21 | 19 20 | ax-mp |  |-  G e. UPGraph | 
						
							| 22 | 3 | fveq2i |  |-  ( Vtx ` G ) = ( Vtx ` <. V , E >. ) | 
						
							| 23 | 1 | ovexi |  |-  V e. _V | 
						
							| 24 |  | s7cli |  |-  <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> e. Word _V | 
						
							| 25 | 2 24 | eqeltri |  |-  E e. Word _V | 
						
							| 26 |  | opvtxfv |  |-  ( ( V e. _V /\ E e. Word _V ) -> ( Vtx ` <. V , E >. ) = V ) | 
						
							| 27 | 23 25 26 | mp2an |  |-  ( Vtx ` <. V , E >. ) = V | 
						
							| 28 | 22 27 | eqtr2i |  |-  V = ( Vtx ` G ) | 
						
							| 29 | 28 | eulerpath |  |-  ( ( G e. UPGraph /\ ( EulerPaths ` G ) =/= (/) ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) | 
						
							| 30 | 21 29 | mpan |  |-  ( ( EulerPaths ` G ) =/= (/) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) | 
						
							| 31 | 30 | necon1bi |  |-  ( -. ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> ( EulerPaths ` G ) = (/) ) | 
						
							| 32 | 18 31 | ax-mp |  |-  ( EulerPaths ` G ) = (/) |