Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
3 |
|
konigsberg.g |
|- G = <. V , E >. |
4 |
1 2 3
|
konigsberglem5 |
|- 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
5 |
|
elpri |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 \/ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 ) ) |
6 |
|
2pos |
|- 0 < 2 |
7 |
|
0re |
|- 0 e. RR |
8 |
|
2re |
|- 2 e. RR |
9 |
7 8
|
ltnsymi |
|- ( 0 < 2 -> -. 2 < 0 ) |
10 |
6 9
|
ax-mp |
|- -. 2 < 0 |
11 |
|
breq2 |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 2 < 0 ) ) |
12 |
10 11
|
mtbiri |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
13 |
8
|
ltnri |
|- -. 2 < 2 |
14 |
|
breq2 |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 -> ( 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> 2 < 2 ) ) |
15 |
13 14
|
mtbiri |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
16 |
12 15
|
jaoi |
|- ( ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 0 \/ ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) = 2 ) -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
17 |
5 16
|
syl |
|- ( ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> -. 2 < ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) ) |
18 |
4 17
|
mt2 |
|- -. ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } |
19 |
1 2 3
|
konigsbergumgr |
|- G e. UMGraph |
20 |
|
umgrupgr |
|- ( G e. UMGraph -> G e. UPGraph ) |
21 |
19 20
|
ax-mp |
|- G e. UPGraph |
22 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` <. V , E >. ) |
23 |
1
|
ovexi |
|- V e. _V |
24 |
|
s7cli |
|- <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> e. Word _V |
25 |
2 24
|
eqeltri |
|- E e. Word _V |
26 |
|
opvtxfv |
|- ( ( V e. _V /\ E e. Word _V ) -> ( Vtx ` <. V , E >. ) = V ) |
27 |
23 25 26
|
mp2an |
|- ( Vtx ` <. V , E >. ) = V |
28 |
22 27
|
eqtr2i |
|- V = ( Vtx ` G ) |
29 |
28
|
eulerpath |
|- ( ( G e. UPGraph /\ ( EulerPaths ` G ) =/= (/) ) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) |
30 |
21 29
|
mpan |
|- ( ( EulerPaths ` G ) =/= (/) -> ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } ) |
31 |
30
|
necon1bi |
|- ( -. ( # ` { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) e. { 0 , 2 } -> ( EulerPaths ` G ) = (/) ) |
32 |
18 31
|
ax-mp |
|- ( EulerPaths ` G ) = (/) |