Step |
Hyp |
Ref |
Expression |
1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
3 |
|
konigsberg.g |
|- G = <. V , E >. |
4 |
|
3nn0 |
|- 3 e. NN0 |
5 |
|
0elfz |
|- ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) |
6 |
4 5
|
ax-mp |
|- 0 e. ( 0 ... 3 ) |
7 |
6 1
|
eleqtrri |
|- 0 e. V |
8 |
|
n2dvds3 |
|- -. 2 || 3 |
9 |
1 2 3
|
konigsberglem1 |
|- ( ( VtxDeg ` G ) ` 0 ) = 3 |
10 |
9
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 0 ) <-> 2 || 3 ) |
11 |
8 10
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 0 ) |
12 |
|
fveq2 |
|- ( x = 0 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 0 ) ) |
13 |
12
|
breq2d |
|- ( x = 0 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
14 |
13
|
notbid |
|- ( x = 0 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
15 |
14
|
elrab |
|- ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 0 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) |
16 |
7 11 15
|
mpbir2an |
|- 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
17 |
|
1nn0 |
|- 1 e. NN0 |
18 |
|
1le3 |
|- 1 <_ 3 |
19 |
|
elfz2nn0 |
|- ( 1 e. ( 0 ... 3 ) <-> ( 1 e. NN0 /\ 3 e. NN0 /\ 1 <_ 3 ) ) |
20 |
17 4 18 19
|
mpbir3an |
|- 1 e. ( 0 ... 3 ) |
21 |
20 1
|
eleqtrri |
|- 1 e. V |
22 |
1 2 3
|
konigsberglem2 |
|- ( ( VtxDeg ` G ) ` 1 ) = 3 |
23 |
22
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 1 ) <-> 2 || 3 ) |
24 |
8 23
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 1 ) |
25 |
|
fveq2 |
|- ( x = 1 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 1 ) ) |
26 |
25
|
breq2d |
|- ( x = 1 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
27 |
26
|
notbid |
|- ( x = 1 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
28 |
27
|
elrab |
|- ( 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 1 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) |
29 |
21 24 28
|
mpbir2an |
|- 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
30 |
|
3re |
|- 3 e. RR |
31 |
30
|
leidi |
|- 3 <_ 3 |
32 |
|
elfz2nn0 |
|- ( 3 e. ( 0 ... 3 ) <-> ( 3 e. NN0 /\ 3 e. NN0 /\ 3 <_ 3 ) ) |
33 |
4 4 31 32
|
mpbir3an |
|- 3 e. ( 0 ... 3 ) |
34 |
33 1
|
eleqtrri |
|- 3 e. V |
35 |
1 2 3
|
konigsberglem3 |
|- ( ( VtxDeg ` G ) ` 3 ) = 3 |
36 |
35
|
breq2i |
|- ( 2 || ( ( VtxDeg ` G ) ` 3 ) <-> 2 || 3 ) |
37 |
8 36
|
mtbir |
|- -. 2 || ( ( VtxDeg ` G ) ` 3 ) |
38 |
|
fveq2 |
|- ( x = 3 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 3 ) ) |
39 |
38
|
breq2d |
|- ( x = 3 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
40 |
39
|
notbid |
|- ( x = 3 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
41 |
40
|
elrab |
|- ( 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 3 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) |
42 |
34 37 41
|
mpbir2an |
|- 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |
43 |
16 29 42
|
3pm3.2i |
|- ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
44 |
|
c0ex |
|- 0 e. _V |
45 |
|
1ex |
|- 1 e. _V |
46 |
|
3ex |
|- 3 e. _V |
47 |
44 45 46
|
tpss |
|- ( ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) |
48 |
43 47
|
mpbi |
|- { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |