| Step | Hyp | Ref | Expression | 
						
							| 1 |  | konigsberg.v |  |-  V = ( 0 ... 3 ) | 
						
							| 2 |  | konigsberg.e |  |-  E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> | 
						
							| 3 |  | konigsberg.g |  |-  G = <. V , E >. | 
						
							| 4 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 5 |  | 0elfz |  |-  ( 3 e. NN0 -> 0 e. ( 0 ... 3 ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  0 e. ( 0 ... 3 ) | 
						
							| 7 | 6 1 | eleqtrri |  |-  0 e. V | 
						
							| 8 |  | n2dvds3 |  |-  -. 2 || 3 | 
						
							| 9 | 1 2 3 | konigsberglem1 |  |-  ( ( VtxDeg ` G ) ` 0 ) = 3 | 
						
							| 10 | 9 | breq2i |  |-  ( 2 || ( ( VtxDeg ` G ) ` 0 ) <-> 2 || 3 ) | 
						
							| 11 | 8 10 | mtbir |  |-  -. 2 || ( ( VtxDeg ` G ) ` 0 ) | 
						
							| 12 |  | fveq2 |  |-  ( x = 0 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 0 ) ) | 
						
							| 13 | 12 | breq2d |  |-  ( x = 0 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) | 
						
							| 14 | 13 | notbid |  |-  ( x = 0 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) | 
						
							| 15 | 14 | elrab |  |-  ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 0 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 0 ) ) ) | 
						
							| 16 | 7 11 15 | mpbir2an |  |-  0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } | 
						
							| 17 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 18 |  | 1le3 |  |-  1 <_ 3 | 
						
							| 19 |  | elfz2nn0 |  |-  ( 1 e. ( 0 ... 3 ) <-> ( 1 e. NN0 /\ 3 e. NN0 /\ 1 <_ 3 ) ) | 
						
							| 20 | 17 4 18 19 | mpbir3an |  |-  1 e. ( 0 ... 3 ) | 
						
							| 21 | 20 1 | eleqtrri |  |-  1 e. V | 
						
							| 22 | 1 2 3 | konigsberglem2 |  |-  ( ( VtxDeg ` G ) ` 1 ) = 3 | 
						
							| 23 | 22 | breq2i |  |-  ( 2 || ( ( VtxDeg ` G ) ` 1 ) <-> 2 || 3 ) | 
						
							| 24 | 8 23 | mtbir |  |-  -. 2 || ( ( VtxDeg ` G ) ` 1 ) | 
						
							| 25 |  | fveq2 |  |-  ( x = 1 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 1 ) ) | 
						
							| 26 | 25 | breq2d |  |-  ( x = 1 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) | 
						
							| 27 | 26 | notbid |  |-  ( x = 1 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) | 
						
							| 28 | 27 | elrab |  |-  ( 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 1 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 1 ) ) ) | 
						
							| 29 | 21 24 28 | mpbir2an |  |-  1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } | 
						
							| 30 |  | 3re |  |-  3 e. RR | 
						
							| 31 | 30 | leidi |  |-  3 <_ 3 | 
						
							| 32 |  | elfz2nn0 |  |-  ( 3 e. ( 0 ... 3 ) <-> ( 3 e. NN0 /\ 3 e. NN0 /\ 3 <_ 3 ) ) | 
						
							| 33 | 4 4 31 32 | mpbir3an |  |-  3 e. ( 0 ... 3 ) | 
						
							| 34 | 33 1 | eleqtrri |  |-  3 e. V | 
						
							| 35 | 1 2 3 | konigsberglem3 |  |-  ( ( VtxDeg ` G ) ` 3 ) = 3 | 
						
							| 36 | 35 | breq2i |  |-  ( 2 || ( ( VtxDeg ` G ) ` 3 ) <-> 2 || 3 ) | 
						
							| 37 | 8 36 | mtbir |  |-  -. 2 || ( ( VtxDeg ` G ) ` 3 ) | 
						
							| 38 |  | fveq2 |  |-  ( x = 3 -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` 3 ) ) | 
						
							| 39 | 38 | breq2d |  |-  ( x = 3 -> ( 2 || ( ( VtxDeg ` G ) ` x ) <-> 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) | 
						
							| 40 | 39 | notbid |  |-  ( x = 3 -> ( -. 2 || ( ( VtxDeg ` G ) ` x ) <-> -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) | 
						
							| 41 | 40 | elrab |  |-  ( 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } <-> ( 3 e. V /\ -. 2 || ( ( VtxDeg ` G ) ` 3 ) ) ) | 
						
							| 42 | 34 37 41 | mpbir2an |  |-  3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } | 
						
							| 43 | 16 29 42 | 3pm3.2i |  |-  ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) | 
						
							| 44 |  | c0ex |  |-  0 e. _V | 
						
							| 45 |  | 1ex |  |-  1 e. _V | 
						
							| 46 |  | 3ex |  |-  3 e. _V | 
						
							| 47 | 44 45 46 | tpss |  |-  ( ( 0 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 1 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } /\ 3 e. { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) <-> { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } ) | 
						
							| 48 | 43 47 | mpbi |  |-  { 0 , 1 , 3 } C_ { x e. V | -. 2 || ( ( VtxDeg ` G ) ` x ) } |