Metamath Proof Explorer


Theorem konigsbergssiedgwpr

Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v
|- V = ( 0 ... 3 )
konigsberg.e
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ">
konigsberg.g
|- G = <. V , E >.
Assertion konigsbergssiedgwpr
|- ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } )

Proof

Step Hyp Ref Expression
1 konigsberg.v
 |-  V = ( 0 ... 3 )
2 konigsberg.e
 |-  E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } ">
3 konigsberg.g
 |-  G = <. V , E >.
4 1 2 3 konigsbergiedgw
 |-  E e. Word { x e. ~P V | ( # ` x ) = 2 }
5 4 jctr
 |-  ( E = ( A ++ B ) -> ( E = ( A ++ B ) /\ E e. Word { x e. ~P V | ( # ` x ) = 2 } ) )
6 ccatrcl1
 |-  ( ( A e. Word _V /\ B e. Word _V /\ ( E = ( A ++ B ) /\ E e. Word { x e. ~P V | ( # ` x ) = 2 } ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } )
7 5 6 syl3an3
 |-  ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } )