Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | konigsberg.v | |- V = ( 0 ... 3 ) |
|
konigsberg.e | |- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
||
konigsberg.g | |- G = <. V , E >. |
||
Assertion | konigsbergssiedgwpr | |- ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigsberg.v | |- V = ( 0 ... 3 ) |
|
2 | konigsberg.e | |- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
|
3 | konigsberg.g | |- G = <. V , E >. |
|
4 | 1 2 3 | konigsbergiedgw | |- E e. Word { x e. ~P V | ( # ` x ) = 2 } |
5 | 4 | jctr | |- ( E = ( A ++ B ) -> ( E = ( A ++ B ) /\ E e. Word { x e. ~P V | ( # ` x ) = 2 } ) ) |
6 | ccatrcl1 | |- ( ( A e. Word _V /\ B e. Word _V /\ ( E = ( A ++ B ) /\ E e. Word { x e. ~P V | ( # ` x ) = 2 } ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } ) |
|
7 | 5 6 | syl3an3 | |- ( ( A e. Word _V /\ B e. Word _V /\ E = ( A ++ B ) ) -> A e. Word { x e. ~P V | ( # ` x ) = 2 } ) |