| Step |
Hyp |
Ref |
Expression |
| 1 |
|
konigsberg.v |
|- V = ( 0 ... 3 ) |
| 2 |
|
konigsberg.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
| 3 |
|
konigsberg.g |
|- G = <. V , E >. |
| 4 |
1 2 3
|
konigsbergiedgw |
|- E e. Word { x e. ~P V | ( # ` x ) = 2 } |
| 5 |
|
opex |
|- <. V , E >. e. _V |
| 6 |
3 5
|
eqeltri |
|- G e. _V |
| 7 |
|
s7cli |
|- <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> e. Word _V |
| 8 |
2 7
|
eqeltri |
|- E e. Word _V |
| 9 |
1 2 3
|
konigsbergvtx |
|- ( Vtx ` G ) = ( 0 ... 3 ) |
| 10 |
1 9
|
eqtr4i |
|- V = ( Vtx ` G ) |
| 11 |
1 2 3
|
konigsbergiedg |
|- ( iEdg ` G ) = <" { 0 , 1 } { 0 , 2 } { 0 , 3 } { 1 , 2 } { 1 , 2 } { 2 , 3 } { 2 , 3 } "> |
| 12 |
2 11
|
eqtr4i |
|- E = ( iEdg ` G ) |
| 13 |
10 12
|
wrdumgr |
|- ( ( G e. _V /\ E e. Word _V ) -> ( G e. UMGraph <-> E e. Word { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 14 |
6 8 13
|
mp2an |
|- ( G e. UMGraph <-> E e. Word { x e. ~P V | ( # ` x ) = 2 } ) |
| 15 |
4 14
|
mpbir |
|- G e. UMGraph |