| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
| 2 |
|
imassrn |
|- ( F " U ) C_ ran F |
| 3 |
2
|
a1i |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( F " U ) C_ ran F ) |
| 4 |
1
|
kqcldsat |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( `' F " ( F " U ) ) = U ) |
| 5 |
|
simpr |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> U e. ( Clsd ` J ) ) |
| 6 |
4 5
|
eqeltrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( `' F " ( F " U ) ) e. ( Clsd ` J ) ) |
| 7 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 8 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
| 9 |
7 8
|
sylib |
|- ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) |
| 10 |
|
qtopcld |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( ( F " U ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. ( Clsd ` J ) ) ) ) |
| 11 |
9 10
|
mpdan |
|- ( J e. ( TopOn ` X ) -> ( ( F " U ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. ( Clsd ` J ) ) ) ) |
| 12 |
11
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( ( F " U ) e. ( Clsd ` ( J qTop F ) ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. ( Clsd ` J ) ) ) ) |
| 13 |
3 6 12
|
mpbir2and |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( F " U ) e. ( Clsd ` ( J qTop F ) ) ) |
| 14 |
1
|
kqval |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 15 |
14
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 16 |
15
|
fveq2d |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( Clsd ` ( KQ ` J ) ) = ( Clsd ` ( J qTop F ) ) ) |
| 17 |
13 16
|
eleqtrrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. ( Clsd ` J ) ) -> ( F " U ) e. ( Clsd ` ( KQ ` J ) ) ) |