Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
2 |
|
imadmres |
|- ( F " dom ( F |` ( A \ U ) ) ) = ( F " ( A \ U ) ) |
3 |
|
dmres |
|- dom ( F |` ( A \ U ) ) = ( ( A \ U ) i^i dom F ) |
4 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
5 |
4
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> F Fn X ) |
6 |
5
|
fndmd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom F = X ) |
7 |
6
|
ineq2d |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( A \ U ) i^i dom F ) = ( ( A \ U ) i^i X ) ) |
8 |
3 7
|
eqtrid |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom ( F |` ( A \ U ) ) = ( ( A \ U ) i^i X ) ) |
9 |
8
|
imaeq2d |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " dom ( F |` ( A \ U ) ) ) = ( F " ( ( A \ U ) i^i X ) ) ) |
10 |
2 9
|
eqtr3id |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( A \ U ) ) = ( F " ( ( A \ U ) i^i X ) ) ) |
11 |
|
indif1 |
|- ( ( A \ U ) i^i X ) = ( ( A i^i X ) \ U ) |
12 |
|
inss2 |
|- ( A i^i X ) C_ X |
13 |
|
ssdif |
|- ( ( A i^i X ) C_ X -> ( ( A i^i X ) \ U ) C_ ( X \ U ) ) |
14 |
12 13
|
ax-mp |
|- ( ( A i^i X ) \ U ) C_ ( X \ U ) |
15 |
11 14
|
eqsstri |
|- ( ( A \ U ) i^i X ) C_ ( X \ U ) |
16 |
|
imass2 |
|- ( ( ( A \ U ) i^i X ) C_ ( X \ U ) -> ( F " ( ( A \ U ) i^i X ) ) C_ ( F " ( X \ U ) ) ) |
17 |
15 16
|
mp1i |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( ( A \ U ) i^i X ) ) C_ ( F " ( X \ U ) ) ) |
18 |
10 17
|
eqsstrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " ( A \ U ) ) C_ ( F " ( X \ U ) ) ) |
19 |
|
sslin |
|- ( ( F " ( A \ U ) ) C_ ( F " ( X \ U ) ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) ) |
20 |
18 19
|
syl |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) ) |
21 |
|
eldifn |
|- ( w e. ( X \ U ) -> -. w e. U ) |
22 |
21
|
adantl |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> -. w e. U ) |
23 |
|
simpll |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> J e. ( TopOn ` X ) ) |
24 |
|
simplr |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> U e. J ) |
25 |
|
eldifi |
|- ( w e. ( X \ U ) -> w e. X ) |
26 |
25
|
adantl |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> w e. X ) |
27 |
1
|
kqfvima |
|- ( ( J e. ( TopOn ` X ) /\ U e. J /\ w e. X ) -> ( w e. U <-> ( F ` w ) e. ( F " U ) ) ) |
28 |
23 24 26 27
|
syl3anc |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> ( w e. U <-> ( F ` w ) e. ( F " U ) ) ) |
29 |
22 28
|
mtbid |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ w e. ( X \ U ) ) -> -. ( F ` w ) e. ( F " U ) ) |
30 |
29
|
ralrimiva |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) |
31 |
|
difss |
|- ( X \ U ) C_ X |
32 |
|
eleq1 |
|- ( z = ( F ` w ) -> ( z e. ( F " U ) <-> ( F ` w ) e. ( F " U ) ) ) |
33 |
32
|
notbid |
|- ( z = ( F ` w ) -> ( -. z e. ( F " U ) <-> -. ( F ` w ) e. ( F " U ) ) ) |
34 |
33
|
ralima |
|- ( ( F Fn X /\ ( X \ U ) C_ X ) -> ( A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) <-> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) ) |
35 |
5 31 34
|
sylancl |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) <-> A. w e. ( X \ U ) -. ( F ` w ) e. ( F " U ) ) ) |
36 |
30 35
|
mpbird |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) ) |
37 |
|
disjr |
|- ( ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) <-> A. z e. ( F " ( X \ U ) ) -. z e. ( F " U ) ) |
38 |
36 37
|
sylibr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) ) |
39 |
|
sseq0 |
|- ( ( ( ( F " U ) i^i ( F " ( A \ U ) ) ) C_ ( ( F " U ) i^i ( F " ( X \ U ) ) ) /\ ( ( F " U ) i^i ( F " ( X \ U ) ) ) = (/) ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) = (/) ) |
40 |
20 38 39
|
syl2anc |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) i^i ( F " ( A \ U ) ) ) = (/) ) |