Metamath Proof Explorer


Theorem kqfval

Description: Value of the function appearing in df-kq . (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2
|- F = ( x e. X |-> { y e. J | x e. y } )
Assertion kqfval
|- ( ( J e. V /\ A e. X ) -> ( F ` A ) = { y e. J | A e. y } )

Proof

Step Hyp Ref Expression
1 kqval.2
 |-  F = ( x e. X |-> { y e. J | x e. y } )
2 id
 |-  ( A e. X -> A e. X )
3 rabexg
 |-  ( J e. V -> { y e. J | A e. y } e. _V )
4 eleq1
 |-  ( x = A -> ( x e. y <-> A e. y ) )
5 4 rabbidv
 |-  ( x = A -> { y e. J | x e. y } = { y e. J | A e. y } )
6 5 1 fvmptg
 |-  ( ( A e. X /\ { y e. J | A e. y } e. _V ) -> ( F ` A ) = { y e. J | A e. y } )
7 2 3 6 syl2anr
 |-  ( ( J e. V /\ A e. X ) -> ( F ` A ) = { y e. J | A e. y } )