Description: The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
Assertion | kqid | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
2 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
3 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) |
|
4 | 2 3 | mpdan | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( J qTop F ) ) ) |
5 | 1 | kqval | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
6 | 5 | oveq2d | |- ( J e. ( TopOn ` X ) -> ( J Cn ( KQ ` J ) ) = ( J Cn ( J qTop F ) ) ) |
7 | 4 6 | eleqtrrd | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |