Description: The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) | |
| Assertion | kqid | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | kqval.2 |  |-  F = ( x e. X |-> { y e. J | x e. y } ) | |
| 2 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) | 
| 3 | qtopid | |- ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) ) | |
| 4 | 2 3 | mpdan | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( J qTop F ) ) ) | 
| 5 | 1 | kqval | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) | 
| 6 | 5 | oveq2d | |- ( J e. ( TopOn ` X ) -> ( J Cn ( KQ ` J ) ) = ( J Cn ( J qTop F ) ) ) | 
| 7 | 4 6 | eleqtrrd | |- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |