Metamath Proof Explorer


Theorem kqid

Description: The topological indistinguishability map is a continuous function into the Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2
|- F = ( x e. X |-> { y e. J | x e. y } )
Assertion kqid
|- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) )

Proof

Step Hyp Ref Expression
1 kqval.2
 |-  F = ( x e. X |-> { y e. J | x e. y } )
2 1 kqffn
 |-  ( J e. ( TopOn ` X ) -> F Fn X )
3 qtopid
 |-  ( ( J e. ( TopOn ` X ) /\ F Fn X ) -> F e. ( J Cn ( J qTop F ) ) )
4 2 3 mpdan
 |-  ( J e. ( TopOn ` X ) -> F e. ( J Cn ( J qTop F ) ) )
5 1 kqval
 |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) )
6 5 oveq2d
 |-  ( J e. ( TopOn ` X ) -> ( J Cn ( KQ ` J ) ) = ( J Cn ( J qTop F ) ) )
7 4 6 eleqtrrd
 |-  ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) )