| Step |
Hyp |
Ref |
Expression |
| 1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
| 2 |
1
|
kqtopon |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| 3 |
2
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| 4 |
|
topontop |
|- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ( KQ ` J ) e. Top ) |
| 5 |
3 4
|
syl |
|- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. Top ) |
| 6 |
|
simplr |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> J e. Nrm ) |
| 7 |
1
|
kqid |
|- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> F e. ( J Cn ( KQ ` J ) ) ) |
| 9 |
|
simprl |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> z e. ( KQ ` J ) ) |
| 10 |
|
cnima |
|- ( ( F e. ( J Cn ( KQ ` J ) ) /\ z e. ( KQ ` J ) ) -> ( `' F " z ) e. J ) |
| 11 |
8 9 10
|
syl2anc |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " z ) e. J ) |
| 12 |
|
simprr |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) |
| 13 |
12
|
elin1d |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ( Clsd ` ( KQ ` J ) ) ) |
| 14 |
|
cnclima |
|- ( ( F e. ( J Cn ( KQ ` J ) ) /\ w e. ( Clsd ` ( KQ ` J ) ) ) -> ( `' F " w ) e. ( Clsd ` J ) ) |
| 15 |
8 13 14
|
syl2anc |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " w ) e. ( Clsd ` J ) ) |
| 16 |
12
|
elin2d |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> w e. ~P z ) |
| 17 |
|
elpwi |
|- ( w e. ~P z -> w C_ z ) |
| 18 |
|
imass2 |
|- ( w C_ z -> ( `' F " w ) C_ ( `' F " z ) ) |
| 19 |
16 17 18
|
3syl |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> ( `' F " w ) C_ ( `' F " z ) ) |
| 20 |
|
nrmsep3 |
|- ( ( J e. Nrm /\ ( ( `' F " z ) e. J /\ ( `' F " w ) e. ( Clsd ` J ) /\ ( `' F " w ) C_ ( `' F " z ) ) ) -> E. u e. J ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 21 |
6 11 15 19 20
|
syl13anc |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> E. u e. J ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 22 |
|
simplll |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> J e. ( TopOn ` X ) ) |
| 23 |
|
simprl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u e. J ) |
| 24 |
1
|
kqopn |
|- ( ( J e. ( TopOn ` X ) /\ u e. J ) -> ( F " u ) e. ( KQ ` J ) ) |
| 25 |
22 23 24
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " u ) e. ( KQ ` J ) ) |
| 26 |
|
simprrl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( `' F " w ) C_ u ) |
| 27 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 28 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
| 29 |
22 27 28
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> Fun F ) |
| 30 |
13
|
adantr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w e. ( Clsd ` ( KQ ` J ) ) ) |
| 31 |
|
eqid |
|- U. ( KQ ` J ) = U. ( KQ ` J ) |
| 32 |
31
|
cldss |
|- ( w e. ( Clsd ` ( KQ ` J ) ) -> w C_ U. ( KQ ` J ) ) |
| 33 |
30 32
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ U. ( KQ ` J ) ) |
| 34 |
|
toponuni |
|- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ran F = U. ( KQ ` J ) ) |
| 35 |
22 2 34
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ran F = U. ( KQ ` J ) ) |
| 36 |
33 35
|
sseqtrrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ ran F ) |
| 37 |
|
funimass1 |
|- ( ( Fun F /\ w C_ ran F ) -> ( ( `' F " w ) C_ u -> w C_ ( F " u ) ) ) |
| 38 |
29 36 37
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( `' F " w ) C_ u -> w C_ ( F " u ) ) ) |
| 39 |
26 38
|
mpd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> w C_ ( F " u ) ) |
| 40 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
| 41 |
22 40
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> J e. Top ) |
| 42 |
|
elssuni |
|- ( u e. J -> u C_ U. J ) |
| 43 |
42
|
ad2antrl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u C_ U. J ) |
| 44 |
|
eqid |
|- U. J = U. J |
| 45 |
44
|
clscld |
|- ( ( J e. Top /\ u C_ U. J ) -> ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) |
| 46 |
41 43 45
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) |
| 47 |
1
|
kqcld |
|- ( ( J e. ( TopOn ` X ) /\ ( ( cls ` J ) ` u ) e. ( Clsd ` J ) ) -> ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 48 |
22 46 47
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) ) |
| 49 |
44
|
sscls |
|- ( ( J e. Top /\ u C_ U. J ) -> u C_ ( ( cls ` J ) ` u ) ) |
| 50 |
41 43 49
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> u C_ ( ( cls ` J ) ` u ) ) |
| 51 |
|
imass2 |
|- ( u C_ ( ( cls ` J ) ` u ) -> ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 52 |
50 51
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 53 |
31
|
clsss2 |
|- ( ( ( F " ( ( cls ` J ) ` u ) ) e. ( Clsd ` ( KQ ` J ) ) /\ ( F " u ) C_ ( F " ( ( cls ` J ) ` u ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 54 |
48 52 53
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ ( F " ( ( cls ` J ) ` u ) ) ) |
| 55 |
|
simprrr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) |
| 56 |
44
|
clsss3 |
|- ( ( J e. Top /\ u C_ U. J ) -> ( ( cls ` J ) ` u ) C_ U. J ) |
| 57 |
41 43 56
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ U. J ) |
| 58 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
| 59 |
22 27 58
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> dom F = X ) |
| 60 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 61 |
22 60
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> X = U. J ) |
| 62 |
59 61
|
eqtrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> dom F = U. J ) |
| 63 |
57 62
|
sseqtrrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` J ) ` u ) C_ dom F ) |
| 64 |
|
funimass3 |
|- ( ( Fun F /\ ( ( cls ` J ) ` u ) C_ dom F ) -> ( ( F " ( ( cls ` J ) ` u ) ) C_ z <-> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 65 |
29 63 64
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( F " ( ( cls ` J ) ` u ) ) C_ z <-> ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) |
| 66 |
55 65
|
mpbird |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( F " ( ( cls ` J ) ` u ) ) C_ z ) |
| 67 |
54 66
|
sstrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) |
| 68 |
|
sseq2 |
|- ( m = ( F " u ) -> ( w C_ m <-> w C_ ( F " u ) ) ) |
| 69 |
|
fveq2 |
|- ( m = ( F " u ) -> ( ( cls ` ( KQ ` J ) ) ` m ) = ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) ) |
| 70 |
69
|
sseq1d |
|- ( m = ( F " u ) -> ( ( ( cls ` ( KQ ` J ) ) ` m ) C_ z <-> ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) |
| 71 |
68 70
|
anbi12d |
|- ( m = ( F " u ) -> ( ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) <-> ( w C_ ( F " u ) /\ ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) ) |
| 72 |
71
|
rspcev |
|- ( ( ( F " u ) e. ( KQ ` J ) /\ ( w C_ ( F " u ) /\ ( ( cls ` ( KQ ` J ) ) ` ( F " u ) ) C_ z ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 73 |
25 39 67 72
|
syl12anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) /\ ( u e. J /\ ( ( `' F " w ) C_ u /\ ( ( cls ` J ) ` u ) C_ ( `' F " z ) ) ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 74 |
21 73
|
rexlimddv |
|- ( ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) /\ ( z e. ( KQ ` J ) /\ w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) ) ) -> E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 75 |
74
|
ralrimivva |
|- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> A. z e. ( KQ ` J ) A. w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) |
| 76 |
|
isnrm |
|- ( ( KQ ` J ) e. Nrm <-> ( ( KQ ` J ) e. Top /\ A. z e. ( KQ ` J ) A. w e. ( ( Clsd ` ( KQ ` J ) ) i^i ~P z ) E. m e. ( KQ ` J ) ( w C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ z ) ) ) |
| 77 |
5 75 76
|
sylanbrc |
|- ( ( J e. ( TopOn ` X ) /\ J e. Nrm ) -> ( KQ ` J ) e. Nrm ) |