| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							kqval.2 | 
							 |-  F = ( x e. X |-> { y e. J | x e. y } ) | 
						
						
							| 2 | 
							
								
							 | 
							topontop | 
							 |-  ( J e. ( TopOn ` X ) -> J e. Top )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Top )  | 
						
						
							| 4 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( KQ ` J ) e. Nrm )  | 
						
						
							| 5 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> J e. ( TopOn ` X ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> z e. J )  | 
						
						
							| 7 | 
							
								1
							 | 
							kqopn | 
							 |-  ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( F " z ) e. ( KQ ` J ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							syl2anc | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " z ) e. ( KQ ` J ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( ( Clsd ` J ) i^i ~P z ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elin1d | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( Clsd ` J ) )  | 
						
						
							| 11 | 
							
								1
							 | 
							kqcld | 
							 |-  ( ( J e. ( TopOn ` X ) /\ w e. ( Clsd ` J ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) )  | 
						
						
							| 12 | 
							
								5 10 11
							 | 
							syl2anc | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) )  | 
						
						
							| 13 | 
							
								9
							 | 
							elin2d | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ~P z )  | 
						
						
							| 14 | 
							
								
							 | 
							elpwi | 
							 |-  ( w e. ~P z -> w C_ z )  | 
						
						
							| 15 | 
							
								
							 | 
							imass2 | 
							 |-  ( w C_ z -> ( F " w ) C_ ( F " z ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3syl | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) C_ ( F " z ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nrmsep3 | 
							 |-  ( ( ( KQ ` J ) e. Nrm /\ ( ( F " z ) e. ( KQ ` J ) /\ ( F " w ) e. ( Clsd ` ( KQ ` J ) ) /\ ( F " w ) C_ ( F " z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) )  | 
						
						
							| 18 | 
							
								4 8 12 16 17
							 | 
							syl13anc | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> J e. ( TopOn ` X ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							kqid | 
							 |-  ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> F e. ( J Cn ( KQ ` J ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m e. ( KQ ` J ) )  | 
						
						
							| 23 | 
							
								
							 | 
							cnima | 
							 |-  ( ( F e. ( J Cn ( KQ ` J ) ) /\ m e. ( KQ ` J ) ) -> ( `' F " m ) e. J )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) e. J )  | 
						
						
							| 25 | 
							
								
							 | 
							simprrl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( F " w ) C_ m )  | 
						
						
							| 26 | 
							
								1
							 | 
							kqffn | 
							 |-  ( J e. ( TopOn ` X ) -> F Fn X )  | 
						
						
							| 27 | 
							
								
							 | 
							fnfun | 
							 |-  ( F Fn X -> Fun F )  | 
						
						
							| 28 | 
							
								19 26 27
							 | 
							3syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> Fun F )  | 
						
						
							| 29 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w e. ( Clsd ` J ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  U. J = U. J  | 
						
						
							| 31 | 
							
								30
							 | 
							cldss | 
							 |-  ( w e. ( Clsd ` J ) -> w C_ U. J )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ U. J )  | 
						
						
							| 33 | 
							
								
							 | 
							fndm | 
							 |-  ( F Fn X -> dom F = X )  | 
						
						
							| 34 | 
							
								19 26 33
							 | 
							3syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = X )  | 
						
						
							| 35 | 
							
								
							 | 
							toponuni | 
							 |-  ( J e. ( TopOn ` X ) -> X = U. J )  | 
						
						
							| 36 | 
							
								19 35
							 | 
							syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> X = U. J )  | 
						
						
							| 37 | 
							
								34 36
							 | 
							eqtrd | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = U. J )  | 
						
						
							| 38 | 
							
								32 37
							 | 
							sseqtrrd | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ dom F )  | 
						
						
							| 39 | 
							
								
							 | 
							funimass3 | 
							 |-  ( ( Fun F /\ w C_ dom F ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) )  | 
						
						
							| 40 | 
							
								28 38 39
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) )  | 
						
						
							| 41 | 
							
								25 40
							 | 
							mpbid | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ ( `' F " m ) )  | 
						
						
							| 42 | 
							
								1
							 | 
							kqtopon | 
							 |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) )  | 
						
						
							| 43 | 
							
								
							 | 
							topontop | 
							 |-  ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ( KQ ` J ) e. Top )  | 
						
						
							| 44 | 
							
								19 42 43
							 | 
							3syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( KQ ` J ) e. Top )  | 
						
						
							| 45 | 
							
								
							 | 
							elssuni | 
							 |-  ( m e. ( KQ ` J ) -> m C_ U. ( KQ ` J ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							ad2antrl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ U. ( KQ ` J ) )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							 |-  U. ( KQ ` J ) = U. ( KQ ` J )  | 
						
						
							| 48 | 
							
								47
							 | 
							clscld | 
							 |-  ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) )  | 
						
						
							| 49 | 
							
								44 46 48
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							cnclima | 
							 |-  ( ( F e. ( J Cn ( KQ ` J ) ) /\ ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) )  | 
						
						
							| 51 | 
							
								21 49 50
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) )  | 
						
						
							| 52 | 
							
								47
							 | 
							sscls | 
							 |-  ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) )  | 
						
						
							| 53 | 
							
								44 46 52
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) )  | 
						
						
							| 54 | 
							
								
							 | 
							imass2 | 
							 |-  ( m C_ ( ( cls ` ( KQ ` J ) ) ` m ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) )  | 
						
						
							| 56 | 
							
								30
							 | 
							clsss2 | 
							 |-  ( ( ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) /\ ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) )  | 
						
						
							| 57 | 
							
								51 55 56
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simprrr | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) )  | 
						
						
							| 59 | 
							
								
							 | 
							imass2 | 
							 |-  ( ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							syl | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) )  | 
						
						
							| 61 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> z e. J )  | 
						
						
							| 62 | 
							
								1
							 | 
							kqsat | 
							 |-  ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( `' F " ( F " z ) ) = z )  | 
						
						
							| 63 | 
							
								19 61 62
							 | 
							syl2anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( F " z ) ) = z )  | 
						
						
							| 64 | 
							
								60 63
							 | 
							sseqtrd | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ z )  | 
						
						
							| 65 | 
							
								57 64
							 | 
							sstrd | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ z )  | 
						
						
							| 66 | 
							
								
							 | 
							sseq2 | 
							 |-  ( u = ( `' F " m ) -> ( w C_ u <-> w C_ ( `' F " m ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							fveq2 | 
							 |-  ( u = ( `' F " m ) -> ( ( cls ` J ) ` u ) = ( ( cls ` J ) ` ( `' F " m ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							sseq1d | 
							 |-  ( u = ( `' F " m ) -> ( ( ( cls ` J ) ` u ) C_ z <-> ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) )  | 
						
						
							| 69 | 
							
								66 68
							 | 
							anbi12d | 
							 |-  ( u = ( `' F " m ) -> ( ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) <-> ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							rspcev | 
							 |-  ( ( ( `' F " m ) e. J /\ ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) )  | 
						
						
							| 71 | 
							
								24 41 65 70
							 | 
							syl12anc | 
							 |-  ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) )  | 
						
						
							| 72 | 
							
								18 71
							 | 
							rexlimddv | 
							 |-  ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ralrimivva | 
							 |-  ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) )  | 
						
						
							| 74 | 
							
								
							 | 
							isnrm | 
							 |-  ( J e. Nrm <-> ( J e. Top /\ A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) )  | 
						
						
							| 75 | 
							
								3 73 74
							 | 
							sylanbrc | 
							 |-  ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Nrm )  |