Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
2 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
3 |
2
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Top ) |
4 |
|
simplr |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( KQ ` J ) e. Nrm ) |
5 |
|
simpll |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> J e. ( TopOn ` X ) ) |
6 |
|
simprl |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> z e. J ) |
7 |
1
|
kqopn |
|- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( F " z ) e. ( KQ ` J ) ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " z ) e. ( KQ ` J ) ) |
9 |
|
simprr |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( ( Clsd ` J ) i^i ~P z ) ) |
10 |
9
|
elin1d |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ( Clsd ` J ) ) |
11 |
1
|
kqcld |
|- ( ( J e. ( TopOn ` X ) /\ w e. ( Clsd ` J ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) ) |
12 |
5 10 11
|
syl2anc |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) e. ( Clsd ` ( KQ ` J ) ) ) |
13 |
9
|
elin2d |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> w e. ~P z ) |
14 |
|
elpwi |
|- ( w e. ~P z -> w C_ z ) |
15 |
|
imass2 |
|- ( w C_ z -> ( F " w ) C_ ( F " z ) ) |
16 |
13 14 15
|
3syl |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> ( F " w ) C_ ( F " z ) ) |
17 |
|
nrmsep3 |
|- ( ( ( KQ ` J ) e. Nrm /\ ( ( F " z ) e. ( KQ ` J ) /\ ( F " w ) e. ( Clsd ` ( KQ ` J ) ) /\ ( F " w ) C_ ( F " z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) |
18 |
4 8 12 16 17
|
syl13anc |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. m e. ( KQ ` J ) ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) |
19 |
|
simplll |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> J e. ( TopOn ` X ) ) |
20 |
1
|
kqid |
|- ( J e. ( TopOn ` X ) -> F e. ( J Cn ( KQ ` J ) ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> F e. ( J Cn ( KQ ` J ) ) ) |
22 |
|
simprl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m e. ( KQ ` J ) ) |
23 |
|
cnima |
|- ( ( F e. ( J Cn ( KQ ` J ) ) /\ m e. ( KQ ` J ) ) -> ( `' F " m ) e. J ) |
24 |
21 22 23
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) e. J ) |
25 |
|
simprrl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( F " w ) C_ m ) |
26 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
27 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
28 |
19 26 27
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> Fun F ) |
29 |
10
|
adantr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w e. ( Clsd ` J ) ) |
30 |
|
eqid |
|- U. J = U. J |
31 |
30
|
cldss |
|- ( w e. ( Clsd ` J ) -> w C_ U. J ) |
32 |
29 31
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ U. J ) |
33 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
34 |
19 26 33
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = X ) |
35 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
36 |
19 35
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> X = U. J ) |
37 |
34 36
|
eqtrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> dom F = U. J ) |
38 |
32 37
|
sseqtrrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ dom F ) |
39 |
|
funimass3 |
|- ( ( Fun F /\ w C_ dom F ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) ) |
40 |
28 38 39
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( F " w ) C_ m <-> w C_ ( `' F " m ) ) ) |
41 |
25 40
|
mpbid |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> w C_ ( `' F " m ) ) |
42 |
1
|
kqtopon |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
43 |
|
topontop |
|- ( ( KQ ` J ) e. ( TopOn ` ran F ) -> ( KQ ` J ) e. Top ) |
44 |
19 42 43
|
3syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( KQ ` J ) e. Top ) |
45 |
|
elssuni |
|- ( m e. ( KQ ` J ) -> m C_ U. ( KQ ` J ) ) |
46 |
45
|
ad2antrl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ U. ( KQ ` J ) ) |
47 |
|
eqid |
|- U. ( KQ ` J ) = U. ( KQ ` J ) |
48 |
47
|
clscld |
|- ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) |
49 |
44 46 48
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) |
50 |
|
cnclima |
|- ( ( F e. ( J Cn ( KQ ` J ) ) /\ ( ( cls ` ( KQ ` J ) ) ` m ) e. ( Clsd ` ( KQ ` J ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) ) |
51 |
21 49 50
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) ) |
52 |
47
|
sscls |
|- ( ( ( KQ ` J ) e. Top /\ m C_ U. ( KQ ` J ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) ) |
53 |
44 46 52
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> m C_ ( ( cls ` ( KQ ` J ) ) ` m ) ) |
54 |
|
imass2 |
|- ( m C_ ( ( cls ` ( KQ ` J ) ) ` m ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
55 |
53 54
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
56 |
30
|
clsss2 |
|- ( ( ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) e. ( Clsd ` J ) /\ ( `' F " m ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
57 |
51 55 56
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) ) |
58 |
|
simprrr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) |
59 |
|
imass2 |
|- ( ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) ) |
60 |
58 59
|
syl |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ ( `' F " ( F " z ) ) ) |
61 |
6
|
adantr |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> z e. J ) |
62 |
1
|
kqsat |
|- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( `' F " ( F " z ) ) = z ) |
63 |
19 61 62
|
syl2anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( F " z ) ) = z ) |
64 |
60 63
|
sseqtrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( `' F " ( ( cls ` ( KQ ` J ) ) ` m ) ) C_ z ) |
65 |
57 64
|
sstrd |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) |
66 |
|
sseq2 |
|- ( u = ( `' F " m ) -> ( w C_ u <-> w C_ ( `' F " m ) ) ) |
67 |
|
fveq2 |
|- ( u = ( `' F " m ) -> ( ( cls ` J ) ` u ) = ( ( cls ` J ) ` ( `' F " m ) ) ) |
68 |
67
|
sseq1d |
|- ( u = ( `' F " m ) -> ( ( ( cls ` J ) ` u ) C_ z <-> ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) |
69 |
66 68
|
anbi12d |
|- ( u = ( `' F " m ) -> ( ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) <-> ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) ) |
70 |
69
|
rspcev |
|- ( ( ( `' F " m ) e. J /\ ( w C_ ( `' F " m ) /\ ( ( cls ` J ) ` ( `' F " m ) ) C_ z ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
71 |
24 41 65 70
|
syl12anc |
|- ( ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) /\ ( m e. ( KQ ` J ) /\ ( ( F " w ) C_ m /\ ( ( cls ` ( KQ ` J ) ) ` m ) C_ ( F " z ) ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
72 |
18 71
|
rexlimddv |
|- ( ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) /\ ( z e. J /\ w e. ( ( Clsd ` J ) i^i ~P z ) ) ) -> E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
73 |
72
|
ralrimivva |
|- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) |
74 |
|
isnrm |
|- ( J e. Nrm <-> ( J e. Top /\ A. z e. J A. w e. ( ( Clsd ` J ) i^i ~P z ) E. u e. J ( w C_ u /\ ( ( cls ` J ) ` u ) C_ z ) ) ) |
75 |
3 73 74
|
sylanbrc |
|- ( ( J e. ( TopOn ` X ) /\ ( KQ ` J ) e. Nrm ) -> J e. Nrm ) |