Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
2 |
|
imassrn |
|- ( F " U ) C_ ran F |
3 |
2
|
a1i |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) C_ ran F ) |
4 |
1
|
kqsat |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) = U ) |
5 |
|
simpr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U e. J ) |
6 |
4 5
|
eqeltrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) e. J ) |
7 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
8 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
9 |
7 8
|
sylib |
|- ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) |
10 |
9
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> F : X -onto-> ran F ) |
11 |
|
elqtop3 |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( ( F " U ) e. ( J qTop F ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. J ) ) ) |
12 |
10 11
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) e. ( J qTop F ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. J ) ) ) |
13 |
3 6 12
|
mpbir2and |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) e. ( J qTop F ) ) |
14 |
1
|
kqval |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
15 |
14
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( KQ ` J ) = ( J qTop F ) ) |
16 |
13 15
|
eleqtrrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) e. ( KQ ` J ) ) |