Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
2 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
3 |
|
elpreima |
|- ( F Fn X -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
4 |
2 3
|
syl |
|- ( J e. ( TopOn ` X ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
5 |
4
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
6 |
1
|
kqfvima |
|- ( ( J e. ( TopOn ` X ) /\ U e. J /\ z e. X ) -> ( z e. U <-> ( F ` z ) e. ( F " U ) ) ) |
7 |
6
|
3expa |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ z e. X ) -> ( z e. U <-> ( F ` z ) e. ( F " U ) ) ) |
8 |
7
|
biimprd |
|- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ z e. X ) -> ( ( F ` z ) e. ( F " U ) -> z e. U ) ) |
9 |
8
|
expimpd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( z e. X /\ ( F ` z ) e. ( F " U ) ) -> z e. U ) ) |
10 |
5 9
|
sylbid |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( z e. ( `' F " ( F " U ) ) -> z e. U ) ) |
11 |
10
|
ssrdv |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) C_ U ) |
12 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ X ) |
13 |
2
|
fndmd |
|- ( J e. ( TopOn ` X ) -> dom F = X ) |
14 |
13
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom F = X ) |
15 |
12 14
|
sseqtrrd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ dom F ) |
16 |
|
sseqin2 |
|- ( U C_ dom F <-> ( dom F i^i U ) = U ) |
17 |
15 16
|
sylib |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( dom F i^i U ) = U ) |
18 |
|
dminss |
|- ( dom F i^i U ) C_ ( `' F " ( F " U ) ) |
19 |
17 18
|
eqsstrrdi |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ ( `' F " ( F " U ) ) ) |
20 |
11 19
|
eqssd |
|- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) = U ) |