Metamath Proof Explorer


Theorem kqt0

Description: The Kolmogorov quotient is T_0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion kqt0
|- ( J e. Top <-> ( KQ ` J ) e. Kol2 )

Proof

Step Hyp Ref Expression
1 toptopon2
 |-  ( J e. Top <-> J e. ( TopOn ` U. J ) )
2 eqid
 |-  ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } )
3 2 kqt0lem
 |-  ( J e. ( TopOn ` U. J ) -> ( KQ ` J ) e. Kol2 )
4 1 3 sylbi
 |-  ( J e. Top -> ( KQ ` J ) e. Kol2 )
5 t0top
 |-  ( ( KQ ` J ) e. Kol2 -> ( KQ ` J ) e. Top )
6 kqtop
 |-  ( J e. Top <-> ( KQ ` J ) e. Top )
7 5 6 sylibr
 |-  ( ( KQ ` J ) e. Kol2 -> J e. Top )
8 4 7 impbii
 |-  ( J e. Top <-> ( KQ ` J ) e. Kol2 )