Description: The Kolmogorov quotient is T_0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | kqt0 | |- ( J e. Top <-> ( KQ ` J ) e. Kol2 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
2 | eqid | |- ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } ) |
|
3 | 2 | kqt0lem | |- ( J e. ( TopOn ` U. J ) -> ( KQ ` J ) e. Kol2 ) |
4 | 1 3 | sylbi | |- ( J e. Top -> ( KQ ` J ) e. Kol2 ) |
5 | t0top | |- ( ( KQ ` J ) e. Kol2 -> ( KQ ` J ) e. Top ) |
|
6 | kqtop | |- ( J e. Top <-> ( KQ ` J ) e. Top ) |
|
7 | 5 6 | sylibr | |- ( ( KQ ` J ) e. Kol2 -> J e. Top ) |
8 | 4 7 | impbii | |- ( J e. Top <-> ( KQ ` J ) e. Kol2 ) |