| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kqval.2 |  |-  F = ( x e. X |-> { y e. J | x e. y } ) | 
						
							| 2 | 1 | kqval |  |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) | 
						
							| 3 | 1 | kqffn |  |-  ( J e. ( TopOn ` X ) -> F Fn X ) | 
						
							| 4 |  | dffn4 |  |-  ( F Fn X <-> F : X -onto-> ran F ) | 
						
							| 5 | 3 4 | sylib |  |-  ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) | 
						
							| 6 |  | qtoptopon |  |-  ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) | 
						
							| 7 | 5 6 | mpdan |  |-  ( J e. ( TopOn ` X ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) | 
						
							| 8 | 2 7 | eqeltrd |  |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |