Metamath Proof Explorer


Theorem kqtopon

Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2
|- F = ( x e. X |-> { y e. J | x e. y } )
Assertion kqtopon
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) )

Proof

Step Hyp Ref Expression
1 kqval.2
 |-  F = ( x e. X |-> { y e. J | x e. y } )
2 1 kqval
 |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) )
3 1 kqffn
 |-  ( J e. ( TopOn ` X ) -> F Fn X )
4 dffn4
 |-  ( F Fn X <-> F : X -onto-> ran F )
5 3 4 sylib
 |-  ( J e. ( TopOn ` X ) -> F : X -onto-> ran F )
6 qtoptopon
 |-  ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) )
7 5 6 mpdan
 |-  ( J e. ( TopOn ` X ) -> ( J qTop F ) e. ( TopOn ` ran F ) )
8 2 7 eqeltrd
 |-  ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) )