Step |
Hyp |
Ref |
Expression |
1 |
|
kqval.2 |
|- F = ( x e. X |-> { y e. J | x e. y } ) |
2 |
1
|
kqval |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
3 |
1
|
kqffn |
|- ( J e. ( TopOn ` X ) -> F Fn X ) |
4 |
|
dffn4 |
|- ( F Fn X <-> F : X -onto-> ran F ) |
5 |
3 4
|
sylib |
|- ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) |
6 |
|
qtoptopon |
|- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
7 |
5 6
|
mpdan |
|- ( J e. ( TopOn ` X ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
8 |
2 7
|
eqeltrd |
|- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |