| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lactghmga.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | lactghmga.h |  |-  H = ( SymGrp ` Y ) | 
						
							| 3 |  | lactghmga.f |  |-  .(+) = ( x e. X , y e. Y |-> ( ( F ` x ) ` y ) ) | 
						
							| 4 |  | ghmgrp1 |  |-  ( F e. ( G GrpHom H ) -> G e. Grp ) | 
						
							| 5 |  | ghmgrp2 |  |-  ( F e. ( G GrpHom H ) -> H e. Grp ) | 
						
							| 6 |  | grpn0 |  |-  ( H e. Grp -> H =/= (/) ) | 
						
							| 7 |  | fvprc |  |-  ( -. Y e. _V -> ( SymGrp ` Y ) = (/) ) | 
						
							| 8 | 2 7 | eqtrid |  |-  ( -. Y e. _V -> H = (/) ) | 
						
							| 9 | 8 | necon1ai |  |-  ( H =/= (/) -> Y e. _V ) | 
						
							| 10 | 5 6 9 | 3syl |  |-  ( F e. ( G GrpHom H ) -> Y e. _V ) | 
						
							| 11 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 12 | 1 11 | ghmf |  |-  ( F e. ( G GrpHom H ) -> F : X --> ( Base ` H ) ) | 
						
							| 13 | 12 | ffvelcdmda |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> ( F ` x ) e. ( Base ` H ) ) | 
						
							| 14 | 10 | adantr |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> Y e. _V ) | 
						
							| 15 | 2 11 | elsymgbas |  |-  ( Y e. _V -> ( ( F ` x ) e. ( Base ` H ) <-> ( F ` x ) : Y -1-1-onto-> Y ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> ( ( F ` x ) e. ( Base ` H ) <-> ( F ` x ) : Y -1-1-onto-> Y ) ) | 
						
							| 17 | 13 16 | mpbid |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> ( F ` x ) : Y -1-1-onto-> Y ) | 
						
							| 18 |  | f1of |  |-  ( ( F ` x ) : Y -1-1-onto-> Y -> ( F ` x ) : Y --> Y ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> ( F ` x ) : Y --> Y ) | 
						
							| 20 | 19 | ffvelcdmda |  |-  ( ( ( F e. ( G GrpHom H ) /\ x e. X ) /\ y e. Y ) -> ( ( F ` x ) ` y ) e. Y ) | 
						
							| 21 | 20 | ralrimiva |  |-  ( ( F e. ( G GrpHom H ) /\ x e. X ) -> A. y e. Y ( ( F ` x ) ` y ) e. Y ) | 
						
							| 22 | 21 | ralrimiva |  |-  ( F e. ( G GrpHom H ) -> A. x e. X A. y e. Y ( ( F ` x ) ` y ) e. Y ) | 
						
							| 23 | 3 | fmpo |  |-  ( A. x e. X A. y e. Y ( ( F ` x ) ` y ) e. Y <-> .(+) : ( X X. Y ) --> Y ) | 
						
							| 24 | 22 23 | sylib |  |-  ( F e. ( G GrpHom H ) -> .(+) : ( X X. Y ) --> Y ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 26 | 1 25 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 27 | 4 26 | syl |  |-  ( F e. ( G GrpHom H ) -> ( 0g ` G ) e. X ) | 
						
							| 28 |  | fveq2 |  |-  ( x = ( 0g ` G ) -> ( F ` x ) = ( F ` ( 0g ` G ) ) ) | 
						
							| 29 | 28 | fveq1d |  |-  ( x = ( 0g ` G ) -> ( ( F ` x ) ` y ) = ( ( F ` ( 0g ` G ) ) ` y ) ) | 
						
							| 30 |  | fveq2 |  |-  ( y = z -> ( ( F ` ( 0g ` G ) ) ` y ) = ( ( F ` ( 0g ` G ) ) ` z ) ) | 
						
							| 31 |  | fvex |  |-  ( ( F ` ( 0g ` G ) ) ` z ) e. _V | 
						
							| 32 | 29 30 3 31 | ovmpo |  |-  ( ( ( 0g ` G ) e. X /\ z e. Y ) -> ( ( 0g ` G ) .(+) z ) = ( ( F ` ( 0g ` G ) ) ` z ) ) | 
						
							| 33 | 27 32 | sylan |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( ( 0g ` G ) .(+) z ) = ( ( F ` ( 0g ` G ) ) ` z ) ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 35 | 25 34 | ghmid |  |-  ( F e. ( G GrpHom H ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( F ` ( 0g ` G ) ) = ( 0g ` H ) ) | 
						
							| 37 | 10 | adantr |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> Y e. _V ) | 
						
							| 38 | 2 | symgid |  |-  ( Y e. _V -> ( _I |` Y ) = ( 0g ` H ) ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( _I |` Y ) = ( 0g ` H ) ) | 
						
							| 40 | 36 39 | eqtr4d |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( F ` ( 0g ` G ) ) = ( _I |` Y ) ) | 
						
							| 41 | 40 | fveq1d |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( ( F ` ( 0g ` G ) ) ` z ) = ( ( _I |` Y ) ` z ) ) | 
						
							| 42 |  | fvresi |  |-  ( z e. Y -> ( ( _I |` Y ) ` z ) = z ) | 
						
							| 43 | 42 | adantl |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( ( _I |` Y ) ` z ) = z ) | 
						
							| 44 | 33 41 43 | 3eqtrd |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( ( 0g ` G ) .(+) z ) = z ) | 
						
							| 45 | 12 | ad2antrr |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> F : X --> ( Base ` H ) ) | 
						
							| 46 |  | simprr |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> v e. X ) | 
						
							| 47 | 45 46 | ffvelcdmd |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` v ) e. ( Base ` H ) ) | 
						
							| 48 | 10 | ad2antrr |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> Y e. _V ) | 
						
							| 49 | 2 11 | elsymgbas |  |-  ( Y e. _V -> ( ( F ` v ) e. ( Base ` H ) <-> ( F ` v ) : Y -1-1-onto-> Y ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( F ` v ) e. ( Base ` H ) <-> ( F ` v ) : Y -1-1-onto-> Y ) ) | 
						
							| 51 | 47 50 | mpbid |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` v ) : Y -1-1-onto-> Y ) | 
						
							| 52 |  | f1of |  |-  ( ( F ` v ) : Y -1-1-onto-> Y -> ( F ` v ) : Y --> Y ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` v ) : Y --> Y ) | 
						
							| 54 |  | simplr |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> z e. Y ) | 
						
							| 55 |  | fvco3 |  |-  ( ( ( F ` v ) : Y --> Y /\ z e. Y ) -> ( ( ( F ` u ) o. ( F ` v ) ) ` z ) = ( ( F ` u ) ` ( ( F ` v ) ` z ) ) ) | 
						
							| 56 | 53 54 55 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( ( F ` u ) o. ( F ` v ) ) ` z ) = ( ( F ` u ) ` ( ( F ` v ) ` z ) ) ) | 
						
							| 57 |  | simpll |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> F e. ( G GrpHom H ) ) | 
						
							| 58 |  | simprl |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> u e. X ) | 
						
							| 59 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 60 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 61 | 1 59 60 | ghmlin |  |-  ( ( F e. ( G GrpHom H ) /\ u e. X /\ v e. X ) -> ( F ` ( u ( +g ` G ) v ) ) = ( ( F ` u ) ( +g ` H ) ( F ` v ) ) ) | 
						
							| 62 | 57 58 46 61 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` ( u ( +g ` G ) v ) ) = ( ( F ` u ) ( +g ` H ) ( F ` v ) ) ) | 
						
							| 63 | 45 58 | ffvelcdmd |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` u ) e. ( Base ` H ) ) | 
						
							| 64 | 2 11 60 | symgov |  |-  ( ( ( F ` u ) e. ( Base ` H ) /\ ( F ` v ) e. ( Base ` H ) ) -> ( ( F ` u ) ( +g ` H ) ( F ` v ) ) = ( ( F ` u ) o. ( F ` v ) ) ) | 
						
							| 65 | 63 47 64 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( F ` u ) ( +g ` H ) ( F ` v ) ) = ( ( F ` u ) o. ( F ` v ) ) ) | 
						
							| 66 | 62 65 | eqtrd |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( F ` ( u ( +g ` G ) v ) ) = ( ( F ` u ) o. ( F ` v ) ) ) | 
						
							| 67 | 66 | fveq1d |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( F ` ( u ( +g ` G ) v ) ) ` z ) = ( ( ( F ` u ) o. ( F ` v ) ) ` z ) ) | 
						
							| 68 | 53 54 | ffvelcdmd |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( F ` v ) ` z ) e. Y ) | 
						
							| 69 |  | fveq2 |  |-  ( x = u -> ( F ` x ) = ( F ` u ) ) | 
						
							| 70 | 69 | fveq1d |  |-  ( x = u -> ( ( F ` x ) ` y ) = ( ( F ` u ) ` y ) ) | 
						
							| 71 |  | fveq2 |  |-  ( y = ( ( F ` v ) ` z ) -> ( ( F ` u ) ` y ) = ( ( F ` u ) ` ( ( F ` v ) ` z ) ) ) | 
						
							| 72 |  | fvex |  |-  ( ( F ` u ) ` ( ( F ` v ) ` z ) ) e. _V | 
						
							| 73 | 70 71 3 72 | ovmpo |  |-  ( ( u e. X /\ ( ( F ` v ) ` z ) e. Y ) -> ( u .(+) ( ( F ` v ) ` z ) ) = ( ( F ` u ) ` ( ( F ` v ) ` z ) ) ) | 
						
							| 74 | 58 68 73 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( u .(+) ( ( F ` v ) ` z ) ) = ( ( F ` u ) ` ( ( F ` v ) ` z ) ) ) | 
						
							| 75 | 56 67 74 | 3eqtr4d |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( F ` ( u ( +g ` G ) v ) ) ` z ) = ( u .(+) ( ( F ` v ) ` z ) ) ) | 
						
							| 76 | 4 | ad2antrr |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> G e. Grp ) | 
						
							| 77 | 1 59 | grpcl |  |-  ( ( G e. Grp /\ u e. X /\ v e. X ) -> ( u ( +g ` G ) v ) e. X ) | 
						
							| 78 | 76 58 46 77 | syl3anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( u ( +g ` G ) v ) e. X ) | 
						
							| 79 |  | fveq2 |  |-  ( x = ( u ( +g ` G ) v ) -> ( F ` x ) = ( F ` ( u ( +g ` G ) v ) ) ) | 
						
							| 80 | 79 | fveq1d |  |-  ( x = ( u ( +g ` G ) v ) -> ( ( F ` x ) ` y ) = ( ( F ` ( u ( +g ` G ) v ) ) ` y ) ) | 
						
							| 81 |  | fveq2 |  |-  ( y = z -> ( ( F ` ( u ( +g ` G ) v ) ) ` y ) = ( ( F ` ( u ( +g ` G ) v ) ) ` z ) ) | 
						
							| 82 |  | fvex |  |-  ( ( F ` ( u ( +g ` G ) v ) ) ` z ) e. _V | 
						
							| 83 | 80 81 3 82 | ovmpo |  |-  ( ( ( u ( +g ` G ) v ) e. X /\ z e. Y ) -> ( ( u ( +g ` G ) v ) .(+) z ) = ( ( F ` ( u ( +g ` G ) v ) ) ` z ) ) | 
						
							| 84 | 78 54 83 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( u ( +g ` G ) v ) .(+) z ) = ( ( F ` ( u ( +g ` G ) v ) ) ` z ) ) | 
						
							| 85 |  | fveq2 |  |-  ( x = v -> ( F ` x ) = ( F ` v ) ) | 
						
							| 86 | 85 | fveq1d |  |-  ( x = v -> ( ( F ` x ) ` y ) = ( ( F ` v ) ` y ) ) | 
						
							| 87 |  | fveq2 |  |-  ( y = z -> ( ( F ` v ) ` y ) = ( ( F ` v ) ` z ) ) | 
						
							| 88 |  | fvex |  |-  ( ( F ` v ) ` z ) e. _V | 
						
							| 89 | 86 87 3 88 | ovmpo |  |-  ( ( v e. X /\ z e. Y ) -> ( v .(+) z ) = ( ( F ` v ) ` z ) ) | 
						
							| 90 | 46 54 89 | syl2anc |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( v .(+) z ) = ( ( F ` v ) ` z ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( u .(+) ( v .(+) z ) ) = ( u .(+) ( ( F ` v ) ` z ) ) ) | 
						
							| 92 | 75 84 91 | 3eqtr4d |  |-  ( ( ( F e. ( G GrpHom H ) /\ z e. Y ) /\ ( u e. X /\ v e. X ) ) -> ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) | 
						
							| 93 | 92 | ralrimivva |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> A. u e. X A. v e. X ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) | 
						
							| 94 | 44 93 | jca |  |-  ( ( F e. ( G GrpHom H ) /\ z e. Y ) -> ( ( ( 0g ` G ) .(+) z ) = z /\ A. u e. X A. v e. X ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) | 
						
							| 95 | 94 | ralrimiva |  |-  ( F e. ( G GrpHom H ) -> A. z e. Y ( ( ( 0g ` G ) .(+) z ) = z /\ A. u e. X A. v e. X ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) | 
						
							| 96 | 24 95 | jca |  |-  ( F e. ( G GrpHom H ) -> ( .(+) : ( X X. Y ) --> Y /\ A. z e. Y ( ( ( 0g ` G ) .(+) z ) = z /\ A. u e. X A. v e. X ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) ) | 
						
							| 97 | 1 59 25 | isga |  |-  ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( X X. Y ) --> Y /\ A. z e. Y ( ( ( 0g ` G ) .(+) z ) = z /\ A. u e. X A. v e. X ( ( u ( +g ` G ) v ) .(+) z ) = ( u .(+) ( v .(+) z ) ) ) ) ) ) | 
						
							| 98 | 4 10 96 97 | syl21anbrc |  |-  ( F e. ( G GrpHom H ) -> .(+) e. ( G GrpAct Y ) ) |