| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lagsubg.1 | 
							 |-  X = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							lagsubg.2 | 
							 |-  .~ = ( G ~QG Y )  | 
						
						
							| 3 | 
							
								
							 | 
							lagsubg.3 | 
							 |-  ( ph -> Y e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							lagsubg.4 | 
							 |-  ( ph -> X e. Fin )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							eqger | 
							 |-  ( Y e. ( SubGrp ` G ) -> .~ Er X )  | 
						
						
							| 6 | 
							
								3 5
							 | 
							syl | 
							 |-  ( ph -> .~ Er X )  | 
						
						
							| 7 | 
							
								6 4
							 | 
							qshash | 
							 |-  ( ph -> ( # ` X ) = sum_ x e. ( X /. .~ ) ( # ` x ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							eqgen | 
							 |-  ( ( Y e. ( SubGrp ` G ) /\ x e. ( X /. .~ ) ) -> Y ~~ x )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							sylan | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> Y ~~ x )  | 
						
						
							| 10 | 
							
								1
							 | 
							subgss | 
							 |-  ( Y e. ( SubGrp ` G ) -> Y C_ X )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl | 
							 |-  ( ph -> Y C_ X )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							ssfid | 
							 |-  ( ph -> Y e. Fin )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> Y e. Fin )  | 
						
						
							| 14 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> X e. Fin )  | 
						
						
							| 15 | 
							
								6
							 | 
							qsss | 
							 |-  ( ph -> ( X /. .~ ) C_ ~P X )  | 
						
						
							| 16 | 
							
								15
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> x e. ~P X )  | 
						
						
							| 17 | 
							
								16
							 | 
							elpwid | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> x C_ X )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							ssfid | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> x e. Fin )  | 
						
						
							| 19 | 
							
								
							 | 
							hashen | 
							 |-  ( ( Y e. Fin /\ x e. Fin ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) )  | 
						
						
							| 20 | 
							
								13 18 19
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) )  | 
						
						
							| 21 | 
							
								9 20
							 | 
							mpbird | 
							 |-  ( ( ph /\ x e. ( X /. .~ ) ) -> ( # ` Y ) = ( # ` x ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							sumeq2dv | 
							 |-  ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = sum_ x e. ( X /. .~ ) ( # ` x ) )  | 
						
						
							| 23 | 
							
								
							 | 
							pwfi | 
							 |-  ( X e. Fin <-> ~P X e. Fin )  | 
						
						
							| 24 | 
							
								4 23
							 | 
							sylib | 
							 |-  ( ph -> ~P X e. Fin )  | 
						
						
							| 25 | 
							
								24 15
							 | 
							ssfid | 
							 |-  ( ph -> ( X /. .~ ) e. Fin )  | 
						
						
							| 26 | 
							
								
							 | 
							hashcl | 
							 |-  ( Y e. Fin -> ( # ` Y ) e. NN0 )  | 
						
						
							| 27 | 
							
								12 26
							 | 
							syl | 
							 |-  ( ph -> ( # ` Y ) e. NN0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							nn0cnd | 
							 |-  ( ph -> ( # ` Y ) e. CC )  | 
						
						
							| 29 | 
							
								
							 | 
							fsumconst | 
							 |-  ( ( ( X /. .~ ) e. Fin /\ ( # ` Y ) e. CC ) -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) )  | 
						
						
							| 30 | 
							
								25 28 29
							 | 
							syl2anc | 
							 |-  ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) )  | 
						
						
							| 31 | 
							
								7 22 30
							 | 
							3eqtr2d | 
							 |-  ( ph -> ( # ` X ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) )  |