Step |
Hyp |
Ref |
Expression |
1 |
|
lagsubg.1 |
|- X = ( Base ` G ) |
2 |
|
lagsubg.2 |
|- .~ = ( G ~QG Y ) |
3 |
|
lagsubg.3 |
|- ( ph -> Y e. ( SubGrp ` G ) ) |
4 |
|
lagsubg.4 |
|- ( ph -> X e. Fin ) |
5 |
1 2
|
eqger |
|- ( Y e. ( SubGrp ` G ) -> .~ Er X ) |
6 |
3 5
|
syl |
|- ( ph -> .~ Er X ) |
7 |
6 4
|
qshash |
|- ( ph -> ( # ` X ) = sum_ x e. ( X /. .~ ) ( # ` x ) ) |
8 |
1 2
|
eqgen |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. ( X /. .~ ) ) -> Y ~~ x ) |
9 |
3 8
|
sylan |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> Y ~~ x ) |
10 |
1
|
subgss |
|- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
11 |
3 10
|
syl |
|- ( ph -> Y C_ X ) |
12 |
4 11
|
ssfid |
|- ( ph -> Y e. Fin ) |
13 |
12
|
adantr |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> Y e. Fin ) |
14 |
4
|
adantr |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> X e. Fin ) |
15 |
6
|
qsss |
|- ( ph -> ( X /. .~ ) C_ ~P X ) |
16 |
15
|
sselda |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x e. ~P X ) |
17 |
16
|
elpwid |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x C_ X ) |
18 |
14 17
|
ssfid |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x e. Fin ) |
19 |
|
hashen |
|- ( ( Y e. Fin /\ x e. Fin ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) ) |
20 |
13 18 19
|
syl2anc |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) ) |
21 |
9 20
|
mpbird |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> ( # ` Y ) = ( # ` x ) ) |
22 |
21
|
sumeq2dv |
|- ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = sum_ x e. ( X /. .~ ) ( # ` x ) ) |
23 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
24 |
4 23
|
sylib |
|- ( ph -> ~P X e. Fin ) |
25 |
24 15
|
ssfid |
|- ( ph -> ( X /. .~ ) e. Fin ) |
26 |
|
hashcl |
|- ( Y e. Fin -> ( # ` Y ) e. NN0 ) |
27 |
12 26
|
syl |
|- ( ph -> ( # ` Y ) e. NN0 ) |
28 |
27
|
nn0cnd |
|- ( ph -> ( # ` Y ) e. CC ) |
29 |
|
fsumconst |
|- ( ( ( X /. .~ ) e. Fin /\ ( # ` Y ) e. CC ) -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |
30 |
25 28 29
|
syl2anc |
|- ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |
31 |
7 22 30
|
3eqtr2d |
|- ( ph -> ( # ` X ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |