| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lagsubg.1 |
|- X = ( Base ` G ) |
| 2 |
|
lagsubg.2 |
|- .~ = ( G ~QG Y ) |
| 3 |
|
lagsubg.3 |
|- ( ph -> Y e. ( SubGrp ` G ) ) |
| 4 |
|
lagsubg.4 |
|- ( ph -> X e. Fin ) |
| 5 |
1 2
|
eqger |
|- ( Y e. ( SubGrp ` G ) -> .~ Er X ) |
| 6 |
3 5
|
syl |
|- ( ph -> .~ Er X ) |
| 7 |
6 4
|
qshash |
|- ( ph -> ( # ` X ) = sum_ x e. ( X /. .~ ) ( # ` x ) ) |
| 8 |
1 2
|
eqgen |
|- ( ( Y e. ( SubGrp ` G ) /\ x e. ( X /. .~ ) ) -> Y ~~ x ) |
| 9 |
3 8
|
sylan |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> Y ~~ x ) |
| 10 |
1
|
subgss |
|- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
| 11 |
3 10
|
syl |
|- ( ph -> Y C_ X ) |
| 12 |
4 11
|
ssfid |
|- ( ph -> Y e. Fin ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> Y e. Fin ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> X e. Fin ) |
| 15 |
6
|
qsss |
|- ( ph -> ( X /. .~ ) C_ ~P X ) |
| 16 |
15
|
sselda |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x e. ~P X ) |
| 17 |
16
|
elpwid |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x C_ X ) |
| 18 |
14 17
|
ssfid |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> x e. Fin ) |
| 19 |
|
hashen |
|- ( ( Y e. Fin /\ x e. Fin ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) ) |
| 20 |
13 18 19
|
syl2anc |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> ( ( # ` Y ) = ( # ` x ) <-> Y ~~ x ) ) |
| 21 |
9 20
|
mpbird |
|- ( ( ph /\ x e. ( X /. .~ ) ) -> ( # ` Y ) = ( # ` x ) ) |
| 22 |
21
|
sumeq2dv |
|- ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = sum_ x e. ( X /. .~ ) ( # ` x ) ) |
| 23 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
| 24 |
4 23
|
sylib |
|- ( ph -> ~P X e. Fin ) |
| 25 |
24 15
|
ssfid |
|- ( ph -> ( X /. .~ ) e. Fin ) |
| 26 |
|
hashcl |
|- ( Y e. Fin -> ( # ` Y ) e. NN0 ) |
| 27 |
12 26
|
syl |
|- ( ph -> ( # ` Y ) e. NN0 ) |
| 28 |
27
|
nn0cnd |
|- ( ph -> ( # ` Y ) e. CC ) |
| 29 |
|
fsumconst |
|- ( ( ( X /. .~ ) e. Fin /\ ( # ` Y ) e. CC ) -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |
| 30 |
25 28 29
|
syl2anc |
|- ( ph -> sum_ x e. ( X /. .~ ) ( # ` Y ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |
| 31 |
7 22 30
|
3eqtr2d |
|- ( ph -> ( # ` X ) = ( ( # ` ( X /. .~ ) ) x. ( # ` Y ) ) ) |