| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latabs1.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							latabs1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							latabs1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 5 | 
							
								1 4 3
							 | 
							latmle1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) ( le ` K ) X )  | 
						
						
							| 6 | 
							
								1 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B )  | 
						
						
							| 7 | 
							
								1 4 2
							 | 
							latleeqj2 | 
							 |-  ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ X e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3com23 | 
							 |-  ( ( K e. Lat /\ X e. B /\ ( X ./\ Y ) e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syld3an3 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							mpbid | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X )  |