Step |
Hyp |
Ref |
Expression |
1 |
|
latabs1.b |
|- B = ( Base ` K ) |
2 |
|
latabs1.j |
|- .\/ = ( join ` K ) |
3 |
|
latabs1.m |
|- ./\ = ( meet ` K ) |
4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
5 |
1 4 2
|
latlej1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) ) |
6 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
7 |
1 4 3
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) ) |
8 |
6 7
|
syld3an3 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) ) |
9 |
5 8
|
mpbid |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ ( X .\/ Y ) ) = X ) |