| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							latabs1.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							latabs1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							latabs1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 5 | 
							
								1 4 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X ( le ` K ) ( X .\/ Y ) )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B )  | 
						
						
							| 7 | 
							
								1 4 3
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syld3an3 | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ( le ` K ) ( X .\/ Y ) <-> ( X ./\ ( X .\/ Y ) ) = X ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							mpbid | 
							 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ ( X .\/ Y ) ) = X )  |