Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 8-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latref.b | |- B = ( Base ` K ) | |
| latref.l | |- .<_ = ( le ` K ) | ||
| Assertion | latasym | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | latref.b | |- B = ( Base ` K ) | |
| 2 | latref.l | |- .<_ = ( le ` K ) | |
| 3 | 1 2 | latasymb | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) | 
| 4 | 3 | biimpd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |