Metamath Proof Explorer


Theorem latasym

Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b
|- B = ( Base ` K )
latref.l
|- .<_ = ( le ` K )
Assertion latasym
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) )

Proof

Step Hyp Ref Expression
1 latref.b
 |-  B = ( Base ` K )
2 latref.l
 |-  .<_ = ( le ` K )
3 1 2 latasymb
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) )
4 3 biimpd
 |-  ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) )