Description: A lattice ordering is asymmetric. ( eqss analog.) (Contributed by NM, 8-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latref.b | |- B = ( Base ` K ) |
|
latref.l | |- .<_ = ( le ` K ) |
||
Assertion | latasym | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latref.b | |- B = ( Base ` K ) |
|
2 | latref.l | |- .<_ = ( le ` K ) |
|
3 | 1 2 | latasymb | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
4 | 3 | biimpd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |